Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knut the polar bear’s medical legacy

03.01.2014
Knut, the polar bear of the Berlin Zoological Garden, drowned in 2011 after suffering seizures and falling into the enclosure pond.

Necropsy and histology at the Leibniz Institute for Zoo and Wildlife Research suggested the cause was encephalitis most likely due to viral infection. After one of the most intensive investigations in veterinary history for a single animal, utilising state-of-the-art pathological techniques and high-throughput next-generation molecular sequencing methods, the conclusions of the investigations are presented.


Polar bear Knut as dermoplastic in the Museum für Naturkunde in Berlin, Germany.
Steven Seet/IZW

Keeping wild animals is an important component of the mission of zoos to educate the public and preserve endangered species. When animals die, tracking the potential cause becomes an investigation of pathogens from around the world. This is because zoo animals are not only potentially exposed to pathogens occurring where the zoo is located, but also to those pathogens harboured by other zoo animals. In other words: the diagnostic challenge is enormous.

In the case of Knut, researchers from the Leibniz Institute for Zoo and Wildlife Research Berlin (IZW), the Freie Universität Berlin, the Friedrich Loeffler Institute – Insel Riems, the Max Delbrück Center for Molecular Medicine in Berlin, the University of California at San Francisco and many others combined their efforts to investigate Knut’s death. Classical pathological, bacteriological, serological, molecular, histological and electron microscopical methods were combined with high throughput microarray and next generation sequencing methods to undertake the most extensive and exhaustive evaluation of the cause of death of any zoo animal to date. The necropsy was headed at the IZW by Dr Claudia Szentiks of the Department of Wildlife Diseases.

“After a detailed necropsy and histology that took several intense days to perform, the results clearly suggested that the underlying cause of Knut’s seizures was a result of encephalitis, most likely of viral origin” says Dr Szentiks.

Encephalitis can be caused by a large number of viruses, bacteria and parasites, and identifying novel pathogens in wild animals is a huge and often insurmountable challenge. In the case of Knut, the team screened gene sequences from plausible causative pathogens from tens of millions of individual DNA sequences.

“The sheer number of experiments undertaken and the sorting of results by many of the top diagnostics groups in Germany and beyond was extremely time consuming but also informative as to what we can and cannot do with current technologies. Many new directions for improvements and novel developments should come from this”, says Professor Alex Greenwood, head of the Department of Wildlife Diseases of the IZW. Although frequently suspected by many to be the likely culprit, the equine herpesviruses found in other polar bears in Germany and elsehwere was not responsible. The analysis of Knut also revealed a novel group of bear retroviruses whose presence was not related to his death. The only pathogen Knut seemed to have been exposed was an influenza A virus, as suggested by the detection of antibodies in his blood. However, it remains unclear and relatively unlikely that the flu was responsible for his death since the actual virus (in the form of viral RNA) could not be detected in his brain.

“After so much hard work, the results appear ultimately sobering. We cannot and therefore should not blame influenza as the source of death” stated Professor Klaus Osterrieder, holder of the chair for Veterinary Virology at the Freie Universität Berlin.

The results illustrate that while great strides in diagnostics have been made over the last decade, wildlife diseases present unique challenges because less is currently known than remains unknown about them. As a case in point, the research on Knut led to the discovery that a herpesvirus of zebras is able to kill polar bears as documented in the Wuppertal Zoo, infecting Knut’s father Lars, who survived the infection, and his partner, Jerka, who died from the infection. This was a surprising result that has developed into an intensive project on herpesvirus transmission in endangered zoo animals.

“It would have been impossible to check for all the suggested culprits without the support by the zoo community which willingly supplied samples from other animals for comparative purposes. This was exemplary. Although it will not help Knut any more, or other bears in the past, because of the new knowledge on pathogens in polar bears the zoos can now begin to develop management strategies to minimise their occurrence”, commented Professor Heribert Hofer, head of the IZW.

Contact:
For press questions:
Steven Seet, +49 30 5168 125, +49 177 857 26 73, seet@izw-berlin.de
Anke Schumann, +49 30 5168 127, schumann@izw-berlin.de
Scientific questions:
Leibniz Institute for Zoo and Wildlife Research (IZW)
in the Forschungsverbund Berlin e.V.
Alfred-Kowalke-Str. 17, 10315 Berlin
Prof Alex Greenwood, +49 30 5168 255, greenwood@izw-berlin.de
Dr Claudia Szentiks, +49 30 5168 213, szentiks@izw-berlin.de
Institut für Virologie
Freie Universität Berlin
Philippstrasse 13, 10115 Berlin
Prof Klaus Osterrieder, +49 30 2093 6564, no34@cornell.edu
Publications:
Szentiks CA, Tsangaras K, Abendroth B, Scheuch M, Stenglein MD, Wohlsein P, Heeger F, Höveler R, Chen W, Sun W, Damiani A, Nikolin V,Gruber AD, Grobbel M, Kalthoff D, Höper D, Czirják GÁ, DeRisi J, Mazzoni CJ, Schüle A, Aue A, East ML, Hofer H, Beer M, Osterrieder K, Greenwood AD (2013): Polar bear encephalitis: Establishment of a comprehensive next-generation pathogen analysis pipeline for captive and free-living wildlife. Journal of Comparative Pathology, doi: 10.1016/j.jcpa.2013.12.005.

Mayer J, Tsangaras K, Heeger F, Avila-Arcos M, Stenglein MD, Chen W, Sun W, Mazzoni CJ, Osterrieder N, Greenwood AD (2013): A novel endogenous betaretrovirus group characterized from polar bears (Ursus maritimus) and giant pandas (Ailuropoda melanoleuca). Virology 443, 1-10. doi: 10.1016/j.virol.2013.05.008.

Greenwood AD, Tsangaras K, Ho SYW, Szentiks CA, Nikolin VM, Ma G, Damiani A, East ML, Lawrenz A, Hofer H, Osterrieder N (2012): A potentially fatal mix of herpes in zoos. Current Biology 22, 1727-1731. http://dx.doi.org/10.1016/j.cub.2012.07.035.

Background Information

The Leibniz Institute for Zoo and Wildlife Research (IZW) investigates the vitality and adaptability of wildlife populations in mammalian and avian species of outstanding ecological interest that face anthropogenic challenges. It studies the adaptive value of traits in the life cycle of wildlife, wildlife diseases and clarifies the biological basis and development of methods for the protection of threatened species. Such knowledge is a precondition for a scientifically based approach to conservation and for the development of concepts for the ecologically sustainable use of natural resources. The IZW is member of the Forschungsverbund Berlin e.V.

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.
Further information:
http://www.izw-berlin.de
http://www.fv-berlin.de
http://www.leibniz-gemeinschaft.de

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>