Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Knowing when to tighten the belt

By relocating a protein that causes cellular constriction, a factor tentatively linked to growth also helps cells retain their natural shape

The epithelial cells that line the surface of tissues form a tightly sealed barrier, with individual cells joined together by structures called apical junctional complexes (AJCs). However, embryonic epithelium undergoes multiple physical rearrangements over development. For example, early in the formation of the brain and spinal cord, a subset of epithelial cells fold inward to form a groove that ultimately develops into a ‘neural tube’.

Such changes are achieved through the physical constriction of the apical (upper) domains of selected epithelial cells, a process driven by a ring-shaped network of cables composed of actin and myosin protein that are anchored at the AJCs. Now, work from Masatoshi Takeichi and postdoctoral fellow Takashi Ishiuchi of the RIKEN Center for Developmental Biology in Kobe has revealed an unexpected role for a protein named Willin in regulating this constriction.

Willin was previously assumed to act primarily as the mammalian equivalent of Expanded, a fruit fly protein that regulates growth. “It turned out that Willin localizes along cell junctions,” says Takeichi, “and we got interested in what it was doing there.”

They determined that Willin associates with a pair of proteins—Par3 and atypical protein kinase C (aPKC)—that help epithelial cells maintain their polarity, with clearly defined apical (top) and basal (bottom) segments. Willin and Par3 both seem to execute highly similar functions: they bind to and shepherd aPKC to AJCs, where aPKC acts to inhibit actomyosin-mediated constriction.

Since aPKC is an enzyme that regulates the function of other proteins by tagging them with chemical modifications, Takeichi and Ishiuchi searched for potential targets. Proteins known as Rho-associated kinases (ROCKs) localize to AJCs and modulate the function of actomyosin fibers, and the researchers confirmed that the ROCKs are direct targets of aPKC. The presence of unmodified ROCK at AJCs appears to promote apical constriction; however, after delivery of aPKC to the AJC, it inhibits constriction by modifying ROCK and triggering its release into the cytoplasm. “This was really an unexpected discovery,” says Takeichi.

These results show that Willin is an important regulator of epithelial cell shape, but Takeichi is not ready to discard the possibility that it may still perform functions that echo those of its cousin, Expanded. “Growth control and junctional contraction might be physiologically linked,” suggests Takeichi. “A future goal would be to clarify whether vertebrate Willin is involved in growth control and, if so, how this relates to its ability to induce epithelial apical constriction.”

The corresponding author for this highlight is based at the Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology


Ishiuchi, T. & Takeichi, M. Willin and Par3 cooperatively regulate epithelial apical constriction through aPKC-mediated ROCK phosphorylation. Nature Cell Biology 13, 860–866 (2011)

gro-pr | Research asia research news
Further information:

Further reports about: AJC Developmental Ishiuchi Knowing RIKEN cell death epithelial cells synthetic biology

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>