Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knowing When Poultry Goes Foul

16.04.2010
Mom’s trusty nose may be good, but researchers at the National Institute of Standards and Technology (NIST) have gone her one better by designing an instrument that quickly and precisely sniffs trace amounts of chemical compounds that indicate poultry spoilage without damaging the product itself.* The process can detect minute amounts of spoilage compounds and can be used by suppliers during all stages of processing, transport and storage.

Several proactive measures are used in the United States to keep poultry from going bad between the time it leaves the farm to when it reaches your grocery cart. Antibiotics and other chemical additives are commonly used to keep the product from spoiling, but without invasive and time-consuming tests, it’s hard to determine if the spoilage process has begun or not.

For several years, detection of volatile organic compounds created when lipids and/or proteins decompose has been used to test for spoilage. The technique developed by NIST research chemists Tom Bruno and Tara Lovestead relies on identifying the much more difficult to detect trace amounts of low volatility compounds that are present early in the decay process. Analyzing such low-volatility compounds used to require impractically long collection times to get a big enough sample for testing and identification.

The key to detecting minute levels of the low volatility compounds produced when chicken spoils is a new method of sampling the “headspace” —the air above a test sample. Bruno devised a technique using a short alumina-coated tube cooled to very low temperatures to promote the adsoption of low-volatility chemicals, a technique called cryoadsorption. (See “Prototype NIST Method Detects and Measures Elusive Hazards,” NIST Tech Beat, Sept. 8, 2009, at www.nist.gov/public_affairs/techbeat/tb2009_0908.htm#explosives.) Among other advantages, Bruno’s sampling method is robust and flexible in terms of where and how it can be used, an important feature for the food industry.

Bruno and Lovestead separated and identified six potential chemical markers that could be used to indicate poultry spoilage before it becomes unhealthy. Those markers were found in the air above spoiled chicken breasts, maintained in their original retail packaging and kept at room temperature for two weeks.

Considering that Americans annually consume an average of nearly 84 pounds of chicken each (per 2008 USDA statistics, the most recent year available), this improved testing method for spoilage could have significant health implications.

* T.Bruno and T. Lovestead. Detection of poultry spoilage markers from headspace analysis with cryoadsorption on a short alumina PLOT column. Food Chemistry, Volume 121, Issue 4, Aug. 15, 2010, pages 1274-1282

James Burrus | Newswise Science News
Further information:
http://www.nist.gov

Further reports about: Foul NIST Poultry spoilage volatile organic compounds

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>