Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knotty proteins present new puzzle

12.06.2012
Researchers work to untangle knots, slipknots in species separated by a billion years of evolution
Strings of all kinds, when jostled, wind up in knots. It turns out that happens even when the strings are long strands of molecules that make up proteins.

A new study by scientists at Rice University and elsewhere examines structures of proteins that not only twist and turn themselves into knots, but also form slipknots that, if anybody could actually see them, might look like shoelaces for cells.

Proteins that serve the same essential functions in species separated by more than a billion years of evolution often display remarkable similarities. Joanna Sulkowska, a postdoctoral researcher at the Center for Theoretical Biological Physics (CTBP) at the University of California at San Diego, said these “strongly conserved” parts of proteins are especially common among those folds and hinges responsible for the knotted portions of a protein strand.

Sulkowska, co-first author of a new paper in the Proceedings of the National Academy of Sciences, works in the lab of her co-author, José Onuchic, Rice’s Harry C. and Olga K. Wiess Chair of Physics and a professor of physics and astronomy, chemistry, biochemistry and cell biology. Sulkowska expects to spend part of her year at CTBP when it moves its base of operation to Rice’s BioScience Research Collaborative this year.

She said slipknotted proteins, while rare, have been found in proteins that cross membrane barriers in cells. These transmembrane proteins stick through the cell membrane like pins in a pin cushion and help the cell sense and respond to its environment. “The slipknot is surprisingly conserved across many different families, from different species: bacteria, yeast and even human,” Sulkowska said. “They have really different evolutionary pathways, yet they conserve the same kind of motif. We think the slipknot stabilizes the location of the protein inside the membrane.”

Although a typical protein folds in a fraction of a second, researchers can see from simulations that knotted and slipknotted proteins would take longer to reach their folded structures than would unknotted proteins. Sulkowska said the extra effort to fold into knotted shapes must have a biological payoff or nature would have selected an easier path.

Finding the payoff is no easy task, but there are genomic clues. For instance, she said researchers suspect that “active sites” that control the folding pattern for knotted proteins often wind up inside the knotted structures after folding is complete. It’s possible, she said, that knotted proteins also have chaperone proteins that help the process along. Another mystery to be solved is how the body degrades knotted proteins; breaking down misfolded proteins is a normal function for healthy cells, and breakdowns in this process have been implicated in diseases like Alzheimer’s and Parkinsons.

Sulkowska, whose interest in knots extends to the macro realms of sailing and climbing, is sure there’s a good reason for all that she and Onuchic are seeing. “This is a new field, but we already know from experience how useful knots are,” she said. “They’re almost everywhere: in your shoes, in moving cargo, in physics as part of string theory. Now we hope to make this knowledge useful, maybe as a way to design new types of very stable proteins for disease treatment.

“Evolution didn’t redact these proteins,” she said. “They still fold, so they must have some function.”

Eric J. Rawdon of the University of St. Thomas, St. Paul, Minn., is co-first author. Co-authors include Kenneth Millett of the University of California at Santa Barbara and Andrzej Stasiak of the University of Lausanne, France.

The National Science Foundation, through CTBP, and the Swiss National Science Foundation supported the research.

Read the abstract at http://www.pnas.org/content/early/2012/06/07/1205918109.abstract

Related materials:

Center for Theoretical Biological Physics: https://ctbp.ucsd.edu/

BioScience Research Collaborative: http://brc.rice.edu/home/

Image for download:

http://news.rice.edu/wp-content/uploads/2012/06/0608_KNOTS.jpg

The molecular structures of the protein Ubiquitin C-terminal hydrolases from, left to right, humans, yeast and malaria-causing plasmodium falciparum cells form the same knotting motif, according to research by scientists associated with the Center for Theoretical Biological Physics. In all three cases, the proteins form 52 knots with nearly the same sizes and positions with respect to a linear map of their polypeptide chains. (Credit: Center for Theoretical Biological Physics)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom.” With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to www.rice.edu/nationalmedia/Rice.pdf.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu
http://www.rice.edu/nationalmedia/Rice.pdf

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>