Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knotty proteins present new puzzle

12.06.2012
Researchers work to untangle knots, slipknots in species separated by a billion years of evolution
Strings of all kinds, when jostled, wind up in knots. It turns out that happens even when the strings are long strands of molecules that make up proteins.

A new study by scientists at Rice University and elsewhere examines structures of proteins that not only twist and turn themselves into knots, but also form slipknots that, if anybody could actually see them, might look like shoelaces for cells.

Proteins that serve the same essential functions in species separated by more than a billion years of evolution often display remarkable similarities. Joanna Sulkowska, a postdoctoral researcher at the Center for Theoretical Biological Physics (CTBP) at the University of California at San Diego, said these “strongly conserved” parts of proteins are especially common among those folds and hinges responsible for the knotted portions of a protein strand.

Sulkowska, co-first author of a new paper in the Proceedings of the National Academy of Sciences, works in the lab of her co-author, José Onuchic, Rice’s Harry C. and Olga K. Wiess Chair of Physics and a professor of physics and astronomy, chemistry, biochemistry and cell biology. Sulkowska expects to spend part of her year at CTBP when it moves its base of operation to Rice’s BioScience Research Collaborative this year.

She said slipknotted proteins, while rare, have been found in proteins that cross membrane barriers in cells. These transmembrane proteins stick through the cell membrane like pins in a pin cushion and help the cell sense and respond to its environment. “The slipknot is surprisingly conserved across many different families, from different species: bacteria, yeast and even human,” Sulkowska said. “They have really different evolutionary pathways, yet they conserve the same kind of motif. We think the slipknot stabilizes the location of the protein inside the membrane.”

Although a typical protein folds in a fraction of a second, researchers can see from simulations that knotted and slipknotted proteins would take longer to reach their folded structures than would unknotted proteins. Sulkowska said the extra effort to fold into knotted shapes must have a biological payoff or nature would have selected an easier path.

Finding the payoff is no easy task, but there are genomic clues. For instance, she said researchers suspect that “active sites” that control the folding pattern for knotted proteins often wind up inside the knotted structures after folding is complete. It’s possible, she said, that knotted proteins also have chaperone proteins that help the process along. Another mystery to be solved is how the body degrades knotted proteins; breaking down misfolded proteins is a normal function for healthy cells, and breakdowns in this process have been implicated in diseases like Alzheimer’s and Parkinsons.

Sulkowska, whose interest in knots extends to the macro realms of sailing and climbing, is sure there’s a good reason for all that she and Onuchic are seeing. “This is a new field, but we already know from experience how useful knots are,” she said. “They’re almost everywhere: in your shoes, in moving cargo, in physics as part of string theory. Now we hope to make this knowledge useful, maybe as a way to design new types of very stable proteins for disease treatment.

“Evolution didn’t redact these proteins,” she said. “They still fold, so they must have some function.”

Eric J. Rawdon of the University of St. Thomas, St. Paul, Minn., is co-first author. Co-authors include Kenneth Millett of the University of California at Santa Barbara and Andrzej Stasiak of the University of Lausanne, France.

The National Science Foundation, through CTBP, and the Swiss National Science Foundation supported the research.

Read the abstract at http://www.pnas.org/content/early/2012/06/07/1205918109.abstract

Related materials:

Center for Theoretical Biological Physics: https://ctbp.ucsd.edu/

BioScience Research Collaborative: http://brc.rice.edu/home/

Image for download:

http://news.rice.edu/wp-content/uploads/2012/06/0608_KNOTS.jpg

The molecular structures of the protein Ubiquitin C-terminal hydrolases from, left to right, humans, yeast and malaria-causing plasmodium falciparum cells form the same knotting motif, according to research by scientists associated with the Center for Theoretical Biological Physics. In all three cases, the proteins form 52 knots with nearly the same sizes and positions with respect to a linear map of their polypeptide chains. (Credit: Center for Theoretical Biological Physics)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom.” With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to www.rice.edu/nationalmedia/Rice.pdf.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu
http://www.rice.edu/nationalmedia/Rice.pdf

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>