Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knotty proteins present new puzzle

12.06.2012
Researchers work to untangle knots, slipknots in species separated by a billion years of evolution
Strings of all kinds, when jostled, wind up in knots. It turns out that happens even when the strings are long strands of molecules that make up proteins.

A new study by scientists at Rice University and elsewhere examines structures of proteins that not only twist and turn themselves into knots, but also form slipknots that, if anybody could actually see them, might look like shoelaces for cells.

Proteins that serve the same essential functions in species separated by more than a billion years of evolution often display remarkable similarities. Joanna Sulkowska, a postdoctoral researcher at the Center for Theoretical Biological Physics (CTBP) at the University of California at San Diego, said these “strongly conserved” parts of proteins are especially common among those folds and hinges responsible for the knotted portions of a protein strand.

Sulkowska, co-first author of a new paper in the Proceedings of the National Academy of Sciences, works in the lab of her co-author, José Onuchic, Rice’s Harry C. and Olga K. Wiess Chair of Physics and a professor of physics and astronomy, chemistry, biochemistry and cell biology. Sulkowska expects to spend part of her year at CTBP when it moves its base of operation to Rice’s BioScience Research Collaborative this year.

She said slipknotted proteins, while rare, have been found in proteins that cross membrane barriers in cells. These transmembrane proteins stick through the cell membrane like pins in a pin cushion and help the cell sense and respond to its environment. “The slipknot is surprisingly conserved across many different families, from different species: bacteria, yeast and even human,” Sulkowska said. “They have really different evolutionary pathways, yet they conserve the same kind of motif. We think the slipknot stabilizes the location of the protein inside the membrane.”

Although a typical protein folds in a fraction of a second, researchers can see from simulations that knotted and slipknotted proteins would take longer to reach their folded structures than would unknotted proteins. Sulkowska said the extra effort to fold into knotted shapes must have a biological payoff or nature would have selected an easier path.

Finding the payoff is no easy task, but there are genomic clues. For instance, she said researchers suspect that “active sites” that control the folding pattern for knotted proteins often wind up inside the knotted structures after folding is complete. It’s possible, she said, that knotted proteins also have chaperone proteins that help the process along. Another mystery to be solved is how the body degrades knotted proteins; breaking down misfolded proteins is a normal function for healthy cells, and breakdowns in this process have been implicated in diseases like Alzheimer’s and Parkinsons.

Sulkowska, whose interest in knots extends to the macro realms of sailing and climbing, is sure there’s a good reason for all that she and Onuchic are seeing. “This is a new field, but we already know from experience how useful knots are,” she said. “They’re almost everywhere: in your shoes, in moving cargo, in physics as part of string theory. Now we hope to make this knowledge useful, maybe as a way to design new types of very stable proteins for disease treatment.

“Evolution didn’t redact these proteins,” she said. “They still fold, so they must have some function.”

Eric J. Rawdon of the University of St. Thomas, St. Paul, Minn., is co-first author. Co-authors include Kenneth Millett of the University of California at Santa Barbara and Andrzej Stasiak of the University of Lausanne, France.

The National Science Foundation, through CTBP, and the Swiss National Science Foundation supported the research.

Read the abstract at http://www.pnas.org/content/early/2012/06/07/1205918109.abstract

Related materials:

Center for Theoretical Biological Physics: https://ctbp.ucsd.edu/

BioScience Research Collaborative: http://brc.rice.edu/home/

Image for download:

http://news.rice.edu/wp-content/uploads/2012/06/0608_KNOTS.jpg

The molecular structures of the protein Ubiquitin C-terminal hydrolases from, left to right, humans, yeast and malaria-causing plasmodium falciparum cells form the same knotting motif, according to research by scientists associated with the Center for Theoretical Biological Physics. In all three cases, the proteins form 52 knots with nearly the same sizes and positions with respect to a linear map of their polypeptide chains. (Credit: Center for Theoretical Biological Physics)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom.” With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to www.rice.edu/nationalmedia/Rice.pdf.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu
http://www.rice.edu/nationalmedia/Rice.pdf

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>