Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knocking on wood in the deep sea: Sunken logs form diverse and dynamic habitats

26.01.2017

The deep sea is a vast and seemingly uninhabitable place, except for some small oases of life. Sunken wood logs, so-called wood falls, can form such oases and provide for rich life for limited periods. A new study by researchers from the MPI Bremen takes a close look at the deep-sea organisms inhabiting wood falls and how they affect their surroundings. They show that sunken logs are highly dynamic ecosystems and play an important role for the diversity and distribution of bacteria and animals alike.

Food is scarce in the deep sea. Thus, morsels of organic matter sinking to the sea floor can form an important food source for many organisms and lead to the establishment of locally highly productive and diverse communities. Such large food falls can be kelp, wood or whale carcasses, for example. While they might only affect small areas of the sea floor, they occur quite frequently and supply large amounts of carbon at a particular time and place.


Freshly deployed log in the Norwegian Sea.

MARUM – Center for Marine Environmental Sciences, University of Bremen


Sampling of highly degraded logs with ROV QUEST.

MARUM – Center for Marine Environmental Sciences, University of Bremen

Make your own food fall

As large organic food falls occur sporadically and locally, they are hard to study. Thus, a team of scientists from the Max Planck Institute for Marine Microbiology in Bremen and the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research in Bremerhaven sank self-made food falls into the deep sea to enable them to study the organisms attracted by those morsels in great detail.

“We prepared a number of wood logs, standardised in size and age, took them to the sea and deployed them at cold seep sites in the Eastern Mediterranean and in the Norwegian Sea”, explains Petra Pop Ristova, first author of the study.

Over a period of three years the logs were repeatedly sampled for their bacterial and larger faunal inhabitants. Subsequently they were retrieved from the sea floor for more detailed analyses in the framework of a joint research project between the Max Planck Society (MPG) and the French National Center for Scientific Research (CNRS) called DIWOOD.

Constant change

“We found that sunken logs are highly dynamic ecosystems”, Pop Ristova says. They are quickly colonised by a diverse community of organisms, starting with wood boring bivalves, which are essential for chewing the wood to small pieces. The wood community is not static but changes continuously. “For example, in the Eastern Mediterranean, different species of wood-boring bivalves succeeded each other, while the number of sipunculids, the so-called peanut worms, continuously increased.” At the same time, the bacterial community changed, with sulphate-reducers and sulphide-oxidisers increasing in proportion.

Moreover, the scientists found that organisms nibbling at logs are not the same all over the ocean. “No other study has yet analysed standardised samples from different ocean regions to compare the succession of deep sea life”, says Pop Ristova. “Logs harboured different inhabitants depending on whether we deployed them in the cold Norwegian Sea or in the warm Mediterranean. Whether that is mainly due to the geographic setting or differing temperature, we can not yet resolve.”

Chips off the old log

The influence of wood falls is not restricted to the logs itself but expands to the surrounding sea floor. For example, sulphide production in the vicinity of the fall increases, accompanied by growing numbers of sulphate-reducers, the scientists report. However, this influence is restricted to a rather small area, extending only a few meters from the log. “This is clearly different from other large organic food falls such as whale carcasses”, says Antje Boetius, senior author of the study and group leader of the HGF-MPG Research Group for Deep Sea Ecology and Technology. “The impact of whale falls was shown to extend far beyond the carcass and last for several decades. Wood cellulose is much harder to degrade than lipids and proteins from a carcass and is carried out only by a few specialised organisms. Also, large mobile predators such as sharks and hagfish are not into wood – and even the wood boring bivalves totally depend on bacteria helping them to use wood as energy source.”

From stone to stone, from log to log

Nevertheless, the log falls do have a far-reaching impact: they serve as stepping stones for seep biota. Seeps and vents on the deep sea floor can lie hundreds of kilometres apart – a long way for bacteria and larvae of seep inhabitants to travel. “On wood falls, conditions favourable for these organisms develop at a certain stage. Thus, they can serve as a stop-over during dispersal”, says Pop Ristova.

Hubs of productivity and biodiversity

When large amounts of food become temporarily available in an otherwise food-deprived surrounding, prolific ecosystems develop that attract a highly adapted and opportunistic fauna. They promote the development of an ecosystem with one the highest species richness known from deep-sea habitats. While log falls might be harder to chew than large carcasses, they nevertheless play an important role for the surrounding ecosystem as hubs of biodiversity and as stepping stones for seep biota.

Original publication
Petra Pop Ristova, Christina Bienhold, Frank Wenzhöfer, Pamela E. Rossel and Antje Boetius: Temporal and spatial variations of bacterial and faunal communities associated with deep-sea wood falls. PLOS ONE.
DOI: 10.1371/journal.pone.0169906


Please direct your queries to

Dr. Petra Pop Ristova
Phone: +49 421 218 65966
E-Mail: pristova(at)marum.de

Prof. Dr. Antje Boetius
Phone: +49 421 2028 860
E-Mail: aboetius(at)mpi-bremen.de

or the press office

Dr. Fanni Aspetsberger
Dr. Manfred Schlösser
Phone: +49 421 2028 947
E-Mail: presse(at)mpi-bremen.de

Weitere Informationen:

http://www.mpi-bremen.de
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169906 (Original publication in PLOS ONE

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

Further reports about: Max-Planck-Institut Mikrobiologie bivalves carcasses deep sea organic food sea floor

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>