Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knocking out a clock gene in plant cells interrupts mitochondrial function and energy release

15.06.2009
A RIKEN-led group of molecular biologists has established the first direct link between the circadian clock mechanism in flowering plants and the functioning of the mitochondria, where energy is generated in the cells.

Daily rhythms in the biochemical or metabolic activity of cells have long been known across all biological kingdoms. They are governed by the oscillating activity of clock genes, the impairment of which has been shown in mice to be related lifestyle diseases such as obesity. In plants, production of plant biomass is likely to be linked with clock genes.

Recent studies in the genetic model plant Arabidopsis have revealed three key genes involved in the timing mechanism—CCA1, LHY and TOC1. These genes form the centerpiece of several interlocked feedback loops which establish and adjust the daily oscillation pattern.

Kazuki Saito and colleagues from the RIKEN Plant Science Center in Yokohama and Nagoya University studied the molecular impact of mutations in these key clock genes. They analyzed not only the direct changes in the nucleic acid and protein products generated by mutant genes, but they also looked at the differences in the downstream metabolic products formed. Details of their work were published recently in the Proceedings of the National Academy of Sciences (1).

TOC1 is one of five related proteins known as the pseudo-response regulator (PRR) family. Previous work has shown them to be important components in adjusting the circadian system to changes in temperature and light. The researchers focused on a triple mutant of PRR9, 7 and 5 which leads to inability to establish a circadian rhythm under constant light. In previous work the research group demonstrated a strong link between this mutant and stress response in plants.

The triple mutant leads to late-flowering plants with dark green leaves. They are similar in appearance to those generated when the CCA1 gene becomes overactive. But the researchers found the metabolic details of two plant forms to be utterly different. In particular, they were surprised to find that the triple mutant led to a build-up of three key intermediate compounds of the tri-carboxylic acid pathway, the standard energy release process which takes place in the mitochondria of all higher organisms. The impact of the mutant PRR clock genes on the mitochondria was direct and unequivocal.

“We now want to determine the molecular components involved in this link between the clock genes and metabolism,” says Saito.

Fukushima, A., Kusano, M., Nakamichi, N., Kobayashi, M., Hayashi, N., Sakakibara, H., Mizuno, T. & Saito, K. Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proceedings of the National Academy of Sciences USA 106, 7251–7256 (2009).

The corresponding author for this highlight is based at the RIKEN Metabolomics Research Group

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/724/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>