Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knocking out a clock gene in plant cells interrupts mitochondrial function and energy release

15.06.2009
A RIKEN-led group of molecular biologists has established the first direct link between the circadian clock mechanism in flowering plants and the functioning of the mitochondria, where energy is generated in the cells.

Daily rhythms in the biochemical or metabolic activity of cells have long been known across all biological kingdoms. They are governed by the oscillating activity of clock genes, the impairment of which has been shown in mice to be related lifestyle diseases such as obesity. In plants, production of plant biomass is likely to be linked with clock genes.

Recent studies in the genetic model plant Arabidopsis have revealed three key genes involved in the timing mechanism—CCA1, LHY and TOC1. These genes form the centerpiece of several interlocked feedback loops which establish and adjust the daily oscillation pattern.

Kazuki Saito and colleagues from the RIKEN Plant Science Center in Yokohama and Nagoya University studied the molecular impact of mutations in these key clock genes. They analyzed not only the direct changes in the nucleic acid and protein products generated by mutant genes, but they also looked at the differences in the downstream metabolic products formed. Details of their work were published recently in the Proceedings of the National Academy of Sciences (1).

TOC1 is one of five related proteins known as the pseudo-response regulator (PRR) family. Previous work has shown them to be important components in adjusting the circadian system to changes in temperature and light. The researchers focused on a triple mutant of PRR9, 7 and 5 which leads to inability to establish a circadian rhythm under constant light. In previous work the research group demonstrated a strong link between this mutant and stress response in plants.

The triple mutant leads to late-flowering plants with dark green leaves. They are similar in appearance to those generated when the CCA1 gene becomes overactive. But the researchers found the metabolic details of two plant forms to be utterly different. In particular, they were surprised to find that the triple mutant led to a build-up of three key intermediate compounds of the tri-carboxylic acid pathway, the standard energy release process which takes place in the mitochondria of all higher organisms. The impact of the mutant PRR clock genes on the mitochondria was direct and unequivocal.

“We now want to determine the molecular components involved in this link between the clock genes and metabolism,” says Saito.

Fukushima, A., Kusano, M., Nakamichi, N., Kobayashi, M., Hayashi, N., Sakakibara, H., Mizuno, T. & Saito, K. Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proceedings of the National Academy of Sciences USA 106, 7251–7256 (2009).

The corresponding author for this highlight is based at the RIKEN Metabolomics Research Group

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/724/
http://www.researchsea.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>