Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knocking out a clock gene in plant cells interrupts mitochondrial function and energy release

15.06.2009
A RIKEN-led group of molecular biologists has established the first direct link between the circadian clock mechanism in flowering plants and the functioning of the mitochondria, where energy is generated in the cells.

Daily rhythms in the biochemical or metabolic activity of cells have long been known across all biological kingdoms. They are governed by the oscillating activity of clock genes, the impairment of which has been shown in mice to be related lifestyle diseases such as obesity. In plants, production of plant biomass is likely to be linked with clock genes.

Recent studies in the genetic model plant Arabidopsis have revealed three key genes involved in the timing mechanism—CCA1, LHY and TOC1. These genes form the centerpiece of several interlocked feedback loops which establish and adjust the daily oscillation pattern.

Kazuki Saito and colleagues from the RIKEN Plant Science Center in Yokohama and Nagoya University studied the molecular impact of mutations in these key clock genes. They analyzed not only the direct changes in the nucleic acid and protein products generated by mutant genes, but they also looked at the differences in the downstream metabolic products formed. Details of their work were published recently in the Proceedings of the National Academy of Sciences (1).

TOC1 is one of five related proteins known as the pseudo-response regulator (PRR) family. Previous work has shown them to be important components in adjusting the circadian system to changes in temperature and light. The researchers focused on a triple mutant of PRR9, 7 and 5 which leads to inability to establish a circadian rhythm under constant light. In previous work the research group demonstrated a strong link between this mutant and stress response in plants.

The triple mutant leads to late-flowering plants with dark green leaves. They are similar in appearance to those generated when the CCA1 gene becomes overactive. But the researchers found the metabolic details of two plant forms to be utterly different. In particular, they were surprised to find that the triple mutant led to a build-up of three key intermediate compounds of the tri-carboxylic acid pathway, the standard energy release process which takes place in the mitochondria of all higher organisms. The impact of the mutant PRR clock genes on the mitochondria was direct and unequivocal.

“We now want to determine the molecular components involved in this link between the clock genes and metabolism,” says Saito.

Fukushima, A., Kusano, M., Nakamichi, N., Kobayashi, M., Hayashi, N., Sakakibara, H., Mizuno, T. & Saito, K. Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proceedings of the National Academy of Sciences USA 106, 7251–7256 (2009).

The corresponding author for this highlight is based at the RIKEN Metabolomics Research Group

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/724/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>