Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kinked nanopores slow DNA passage for easier sequencing

02.08.2010
Sandia self-assembly and atomic-layer deposition improve process fivefold

In an innovation critical to improved DNA sequencing, a markedly slower transmission of DNA through nanopores has been achieved by a team led by Sandia National Laboratories researchers.

Solid-state nanopores sculpted from silicon dioxide are generally straight, tiny tunnels more than a thousand times smaller than the diameter of a human hair. They are used as sensors to detect and characterize DNA, RNA and proteins. But these materials shoot through such holes so rapidly that sequencing the DNA passing through them, for example, is a problem.

In a paper published this week online (July 23) in Nature Materials (hardcopy slated for August, Vol.9, pp. 667-675), a team led by Sandia National Laboratories researchers reports using self-assembly techniques to fabricate equally tiny but kinked nanopores. Combined with atomic-layer deposition to modify the chemical characteristics of the nanopores, the innovations achieve a fivefold slowdown in the voltage-driven translocation speeds critically needed in DNA sequencing. (Translocation involves DNA entering and passing completely through the pores, which are only slightly wider than the DNA itself.)

“By control of pore size, length, shape and composition,” says lead researcher Jeff Brinker, “we capture the main functional behaviors of protein pores in our solid-state nanopore system.” The importance of a fivefold slowdown in this kind of work, Brinker says, is large.

Also of note is the technique’s capability to separate single- and double-stranded DNA in an array format. “There are promising DNA sequencing technologies that require this,” says Brinker.

The idea of using synthetic solid-state nanopores as single-molecule sensors for detection and characterization of DNA and its sister materials is currently under intensive investigation by researchers around the world. The thrust was inspired by the exquisite selectivity and flux demonstrated by natural biological channels. Researchers hope to emulate these behaviors by creating more robust synthetic materials more readily integrated into practical devices.

Current scientific procedures align the formation of nominally cylindrical or conical pores at right angles to a membrane surface. These are less capable of significantly slowing the passage of DNA than the kinked nanopores.

“We had a pretty simple idea,” Brinker says. “We use the self-assembly approaches we pioneered to make ultrathin membranes with ordered arrays of about 3-nanometer diameter pores. We then further tune the pore size via an atomic-layer deposition process we invented. This allows us to control the pore diameter and surface chemistry at the subnanometer scale. Compared to other solid state nanopores developed to date, our system combines finer control of pore size with the development of a kinked pore pathway. In combination, these allow slowing down the DNA velocity.”

The work is supported by the Air Force Office of Scientific Research, the Department of Energy’s Basic Energy Sciences and Sandia’s Laboratory Directed Research and Development office.

In addition to Brinker, participating team members include Sandians David Adams, Carter Hodges and former Sandia post-doctoral student Yingbing Jiang, with University of New Mexico (UNM) researchers Zhu Chen, Darren Dunphy, Nanguo Liu, and George Xomeritakas. Other research participants are from the UNM School of Pharmacy, the University of Illinois at Urbana-Champaign’s Beckman Institute and Mechanical Science and Engineering Dept., and Purdue University’s School of Chemical Engineering.

Brinker is a Sandia Fellow, and Distinguished and Regent’s Professor of Chemical and Nuclear Engineering and Molecular Genetics and Microbiology at UNM.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

neal singer | EurekAlert!
Further information:
http://www.sandia.gov

Further reports about: Chemical DNA DNA sequencing Energy Science Ferchau Engineering Nuclear UNM laboratories

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>