Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The new kid on the block

06.06.2011
The first cubic-shaped complexes of rare-earth metals and organic carbenes present chemists with a unique structure motif for carbene chemistry study

In synthetic chemistry, ‘carbene’ species—compounds bearing a carbon atom with two unpaired electrons—have a ferocious reputation. Left uncontrolled, they will react with almost any molecule they meet.

But by harnessing this vigor with transition metals, chemists can turn carbenes into powerful chemical transformation reagents. Now, Zhaomin Hou and colleagues from the RIKEN Advanced Science Institute in Wako report a new class of compounds that contain multiple carbene units in one extraordinary structure: a cube-shaped molecule stabilized by ligand-protected rare-earth metals[1].

Rare-earth metals hold more electrons within their atomic radii than most other elements, making them essential in high-tech devices such as superconductors and hybrid vehicle batteries. Combining these metals with carbenes could lead to breakthrough procedures in synthetic chemistry. However, rare-earth metal–carbene complexes are usually unstable because the bonds they form are lopsided electronically, and therefore extremely reactive.

To overcome this problem, Hou and colleagues turned to a bulky ligand, based on a five-membered aromatic ring called cyclopentadiene (Cp´), which can trap rare-earth metal–carbene complexes into ordered solids. By mixing Cp´-protected lutetium (Lu) and thulium (Tm) rare-earth metal precursors with a carbon-donating aluminum reagent, they isolated a unique set of hybrid polyhedral crystals. X-ray analysis showed that these materials had a core of three rare-earth metals interconnected by six bridging methyl (CH3) groups.

An unexpected twist occurred when the researchers tested the thermal stability of the Lu– and Tm–methyl complexes. Heating to 90 °C caused the methyl groups to lose one of their hydrogen atoms, transforming them into carbenes. Then, after the elimination of a methane molecule, the crystal structure rearranged into a perfectly shaped cube featuring four Cp´-protected rare-earth metals and four carbene units (Fig. 1).

The team’s experiments revealed that the cubes spontaneously turned benzene–carbonyl molecules into alkenes by swapping their carbene groups for oxygen atoms, yielding a new oxygenated cube in the process. The researchers are now examining the reactivity of the cubes toward other molecules and plan to fine-tune the structure and reactivity of carbene compounds by investigating differently sized rare-earth metals together with different supporting ligands.

“This work demonstrates for the first time that methane can be eliminated rather easily from rare earth complexes containing methyl groups, affording structurally stable but highly reactive multi-carbene species,” says Hou. “Further studies along this line should open up a completely new frontier in rare-earth carbene chemistry.”

The corresponding author for this highlight is based at the Advanced Catalyst Research Team, RIKEN Advanced Science Institute

Journal information

[1] Zhang, W.-X., Wang, Z., Nishiura, M., Xi, Z. & Hou, Z. Ln4(CH2)4 cubane-type rare-earth methylidene complexes consisting of “(C5Me4SiMe3)LnCH2” units (Ln = Tm, Lu). Journal of the American Chemical Society 133, 5712–5715 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>