Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key Step in Body’s Ability to Make Red Blood Cells

02.08.2010
Researchers at UT Southwestern Medical Center have uncovered a key step in the creation of new red blood cells in an animal study.

They found that a tiny fragment of ribonucleic acid (RNA), a chemical cousin of DNA, prompts stem cells to mature into red blood cells. The researchers also created an artificial RNA inhibitor to block this process.

Such interventions, if fruitful in humans, might be useful against some cancers and other diseases, such as polycythemia vera, in which the body produces a life-threatening excess of blood cells. Conversely, a drug that boosts red blood cell production might be useful against anemia, blood loss or altitude sickness.

“The important finding is that this microRNA, miR-451, is a powerful natural regulator of red blood cell production,” said Dr. Eric Olson, chairman of molecular biology at UT Southwestern and senior author of the study, which appears in the Aug. 1 issue of Genes & Development.

“We also showed that a man-made miR-451 inhibitor can reduce miR-451 levels in a mouse and block blood-cell production. We hope that this inhibitor and similarly functioning molecules might lead to new drugs against the fatal disease polycythemia vera, which currently has no therapies,” said Dr. Olson, who directs the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology.

Red blood cells, which carry oxygen throughout the body, are created in bone marrow from stem cells. The body steps up its production of red blood cells in response to stresses such as anemia, blood loss or low oxygen, but overproduction of the cells increases the risk of stroke and blood clots.

RNA molecules, found throughout cells, perform several jobs. MicroRNAs often bind to and disable other types of RNA, preventing them from carrying out their functions.

Dr. Olson and his colleagues study many different types of microRNAs to determine their functions and to find therapeutic uses of artificial microRNAs.

“miR-451 is found in great abundance in mature red blood cells, but its function was not known,” said lead author David Patrick, a graduate student in molecular biology.

In the new study, the scientists created genetically engineered mice that could not make miR-451. The mice had a lowered red blood cell count and also had difficulty creating more red blood cells under conditions that usually stimulate production.

miR-451 works by interacting with another RNA involved in producing a protein called 14-3-3-zeta, which plays a role in the maturation of many types of cells, the researchers found.

The team also treated blood stem cells with an artificial RNA designed to inhibit miR-451. As a result, the number of red blood cells decreased.

Dr. Olson and his colleagues are pursuing a patent on miR-451 inhibitors and studying whether a microRNA-based drug might be useful in treating several blood-related disorders.

Other UT Southwestern researchers involved in the study were Dr. Cheng Zhang, assistant professor of physiology and developmental biology; Xiaoxia Qi, research scientist in molecular biology; and Dr. Lily Jun-Shen Huang, assistant professor of cell biology. Researchers from Texas A&M Health Science Center, Houston; Texas Heart Institute, Houston; and the University of Houston also participated.

The study was funded by the National Institutes of Health, the Welch Foundation and the American Heart Association – Jon Holden DeHaan Foundation

Aline McKenzie | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>