Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key Step in Body’s Ability to Make Red Blood Cells

02.08.2010
Researchers at UT Southwestern Medical Center have uncovered a key step in the creation of new red blood cells in an animal study.

They found that a tiny fragment of ribonucleic acid (RNA), a chemical cousin of DNA, prompts stem cells to mature into red blood cells. The researchers also created an artificial RNA inhibitor to block this process.

Such interventions, if fruitful in humans, might be useful against some cancers and other diseases, such as polycythemia vera, in which the body produces a life-threatening excess of blood cells. Conversely, a drug that boosts red blood cell production might be useful against anemia, blood loss or altitude sickness.

“The important finding is that this microRNA, miR-451, is a powerful natural regulator of red blood cell production,” said Dr. Eric Olson, chairman of molecular biology at UT Southwestern and senior author of the study, which appears in the Aug. 1 issue of Genes & Development.

“We also showed that a man-made miR-451 inhibitor can reduce miR-451 levels in a mouse and block blood-cell production. We hope that this inhibitor and similarly functioning molecules might lead to new drugs against the fatal disease polycythemia vera, which currently has no therapies,” said Dr. Olson, who directs the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology.

Red blood cells, which carry oxygen throughout the body, are created in bone marrow from stem cells. The body steps up its production of red blood cells in response to stresses such as anemia, blood loss or low oxygen, but overproduction of the cells increases the risk of stroke and blood clots.

RNA molecules, found throughout cells, perform several jobs. MicroRNAs often bind to and disable other types of RNA, preventing them from carrying out their functions.

Dr. Olson and his colleagues study many different types of microRNAs to determine their functions and to find therapeutic uses of artificial microRNAs.

“miR-451 is found in great abundance in mature red blood cells, but its function was not known,” said lead author David Patrick, a graduate student in molecular biology.

In the new study, the scientists created genetically engineered mice that could not make miR-451. The mice had a lowered red blood cell count and also had difficulty creating more red blood cells under conditions that usually stimulate production.

miR-451 works by interacting with another RNA involved in producing a protein called 14-3-3-zeta, which plays a role in the maturation of many types of cells, the researchers found.

The team also treated blood stem cells with an artificial RNA designed to inhibit miR-451. As a result, the number of red blood cells decreased.

Dr. Olson and his colleagues are pursuing a patent on miR-451 inhibitors and studying whether a microRNA-based drug might be useful in treating several blood-related disorders.

Other UT Southwestern researchers involved in the study were Dr. Cheng Zhang, assistant professor of physiology and developmental biology; Xiaoxia Qi, research scientist in molecular biology; and Dr. Lily Jun-Shen Huang, assistant professor of cell biology. Researchers from Texas A&M Health Science Center, Houston; Texas Heart Institute, Houston; and the University of Houston also participated.

The study was funded by the National Institutes of Health, the Welch Foundation and the American Heart Association – Jon Holden DeHaan Foundation

Aline McKenzie | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>