Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to Sonic Hedgehog Control of Brain Development

30.10.2008
Penn School of Medicine researchers have discovered how the expression of the Sonic hedgehog gene is regulated during brain development and how mutations that alter this process cause brain malformations.

University of Pennsylvania School of Medicine researchers have discovered how the expression of the Sonic hedgehog gene is regulated during brain development and how mutations that alter this process cause brain malformations. The results appear online this month in Nature Genetics.

Sonic hedgehog (Shh) plays a key role in regulating many aspects of embryonic development including, growth of digits on limbs and organization of neurons in the brain. It controls cell division of adult stem cells and has been implicated in some cancers.

"Elucidating the regulators of Shh expression in the forebrain will not only improve our fundamental understanding of brain development, but may also lead to novel insights into the pathogenesis of holoprosencephaly and possibly other malformations in the brain,” says senior author Douglas J. Epstein, PhD, Associate Professor of Genetics.

Holoprosencephaly occurs when an embryo's forebrain, the large frontal area of the human brain, fails to divide to form left and right halves, causing defects in the development of the face and in brain structure and function. Symptoms can be moderate, in the case of a cleft lip or palate to severe, as in cyclopia, the development of one eye rather than two. About one in 16,000 live births display a type of holoprosencephaly.

A decrease in the Shh protein by 50 percent predisposes humans to craniofacial problems such as holoprosencephaly. Too much Shh can lead to tumor formation. Shh is the most commonly mutated gene in holoprosencephaly and can involve about seven other genes.

In a previous study published in the journal Development, the Penn group surveyed one million bases, the basic building blocks of DNA, in transgenic mice for the sequences that turn on Shh during the development of the forebrain. They identified a brain specific enhancer that drives expression of Shh in the hypothalamus. Enhancers are regulatory sequences that drive a gene’s transcription, ensuring that it is turned on and off at the appropriate time. Enhancers can be located nearby to the genes they regulate or, as in the case of Shh, operate over hundreds of thousands of base pairs away.

In the current study, the investigators searched for mutations in the enhancer sequence in holoprosencephalic patients. They identified one mutation in a region of the enhancer that has been conserved for over 300 million years of evolution, attesting to the importance of these sequences. The mutation caused a significant reduction in Shh enhancer activity in the hypothalamus.

In turn, they screened for proteins that assemble on the Shh brain enhancer. They found a protein called Six3 that binds less tightly to the mutated form of the Shh enhancer. The enhancer can’t work without the proteins that bind to it, and this study showed a direct link between the Six3 DNA- binding protein, the sequence that regulates Shh, and hence brain development. Interestingly, mutations in Six3 also cause holoprosencephaly, but the mechanism by which this occurs was previously unknown. Results from the Penn study now indicate that it is likely through the failure to activate Shh.

Identifyng additional components of the Shh brain enhancer complex will further our understanding of how gene regulatory networks operate during normal brain development. This type of basic research should also be instrumental in identifying additional causes of holoprosencephaly and other congenital brain anomalies resulting from the misregulation of Shh expression.

Penn coauthors are Yongsu Jeong and Federico Coluccio Leskow. This research was funded in part by an NIH grant from the National Institute of Neurological Disease and Stroke (NINDS) and a grant from the March of Dimes.

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation's top ten "Honor Roll" hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | Newswise Science News
Further information:
http://www.uphs.upenn.edu
http://www.uphs.upenn.edu/news/News_Releases/2008/10/sonic-brain-development.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>