Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Key Reproductive Hormone in Oldest Vertebrate ID’d

Looking at a hagfish – an eyeless, snot-covered, worm-like scavenger of the deep –the last thing that comes to mind is sex. Yet the reproductive functioning of these ancient vertebrates is such an enduring enigma that a gold medal was once offered to anyone who could elucidate it.

Although the prize expired, unclaimed, long ago, University of New Hampshire professor of biochemistry Stacia Sower and colleagues at two Japanese universities have identified the first reproductive hormone of the hagfish – a gonadatropin -- representing a significant step toward unraveling the mystery of hagfish reproduction.

Their findings, “Evolutionary origin of a functional gonadotropin in the pituitary of the most primitive vertebrate, hagfish,” were published in the journal Proceedings of the National Academies of Science (PNAS) in September.

“This is a significant breakthrough with hagfish,” says Sower, who was second senior author on this paper, co-authored by principal investigator Katsuhisa Uchida and Sower’s long-time collaborator Masumi Nozaki, both of Niigata University in Japan. Gonadatropins (GTHs) are a protein secreted from the pituitary, stimulating the gonads (ovaries and testes) to produce and release the sex steroid hormones which prompt their growth and maturation. GTHs are produced in response to hypothalamic gonadotropin-releasing hormone (GnRH), what Sower calls the “master molecule” for reproduction in vertebrates; its discovery remains the holy grail of understanding hagfish reproduction.

At 500 million years old, hagfish are the oldest living vertebrate, predating the dinosaurs. “They’re one of evolution’s great success stories,” says Sower, who has devoted the majority of her 30-year career researching hagfish and the similarly un-charismatic lamprey eels. “Here’s this animal with a backbone that we don’t know anything about.” They’re notoriously difficult to study, in part because their habitat is the ocean floor at 100 meters or more.

Yet their important evolutionary position makes hagfish worthy of scientific inquiry. “We look at the evolution of the hormones and receptors and say, ‘have they retrained characteristics of their ancestral forms, or are they more similar to higher vertebrates?’” says Sower. “They’re a key to understanding the evolution of later evolved vertebrates.”

Compounding the urgency of better understanding hagfish reproduction is their growing importance as a fishery in the Gulf of Maine. Despite their vicious nature and least appealing characteristic – the stress-induced secretion of mucous from up to 200 slime glands along their bodies – hagfish are prized, particularly in Asian markets. Their tough, soft skin is marketed as “eel” skin for wallets, belts and other items (“Because they’re not going to sell something that says ‘hagfish,’” says Sower, pulling out her own flawless 20-year-old eel skin wallet).

Fished in the Gulf of Maine since 1992, hagfish have been fished out of the waters off Korea and Japan and overfished on the U.S. West coast. They also play a significant role in nutrient cycling and ocean-floor clean-up, feeding primarily on dead and dying fish. Lacking knowledge on their reproductive functions – how, when and where they spawn – the hagfish could be fished to extinction, says Sower.

Sower, who directs the Center for Molecular and Comparative Endocrinology at UNH, has worked with Nozaki on hagfish reproduction since both scientists were postdoctoral researchers at the University of Washington in 1980. The two, along with Hiroshi Kawauchi of Kitasato University in Japan, have shared students and researchers through a formal collaboration that’s produced more than 30 papers. It’s also, notes Sower, produced many failures as they’ve labored to identify the hagfish GTH.

“Now we’re filling in the gaps of what we know,” she says.

To download a copy of the paper, go to

This work was supported in part by a grant from the National Science Foundation. Sower’s ongoing work on hagfish gonadotropin has also been funded in part by the New Hampshire Agricultural Experiment Station.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,200 graduate students.

Beth Potier | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>