Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The key (proteins) to self-renewing skin

06.07.2012
In the July 6 issue of Cell Stem Cell, researchers at the University of California, San Diego School of Medicine describe how human epidermal progenitor cells and stem cells control transcription factors to avoid premature differentiation, preserving their ability to produce new skin cells throughout life.

The findings provide new insights into the role and importance of exosomes and their targeted gene transcripts, and may help point the way to new drugs or therapies for not just skin diseases, but other disorders in which stem and progenitor cell populations are affected.


A magnification of the four distinct strata of human skin. At the top is the stratum corneum consisting of several layers of flat, dead, waterproof keratinocytes -- the outer layer of skin cells. Beneath the stratum corneum are the strata granulosum, spinosum and basale. It is in the stratum basale that resident stem cells differentiate to provide new cells and renew the skin. Below the stratum basale is the dermis, a collagen rich tissue that cushions the body.

Credit: UC San Diego School of Medicine

Stem cells, of course, are specialized cells capable of endlessly replicating to become any type of cell needed, a process known as differentiation. Progenitor cells are more limited, typically differentiating into a specific type of cell and able to divide only a fixed number of times.

Throughout life, human skin self-renews. Progenitor and stem cells deep in the epidermis constantly produce new skin cells called keratinocytes that gradually rise to the surface where they will be sloughed off. One of the ways that stem and progenitor cells maintain internal health during their lives is through the exosome – a collection of approximately 11 proteins responsible for degrading and recycling different RNA elements, such as messenger RNA that wear out or that contain errors resulting in the translation of dysfunctional proteins which could potentially be deleterious to the cell.

"In short," said George L. Sen, PhD, assistant professor of medicine and cellular and molecular medicine, "the exosome functions as a surveillance system in cells to regulate the normal turnover of RNAs as well as to destroy RNAs with errors in them."

Sen and colleagues Devendra S. Mistry, PhD, a postdoctoral research fellow, and staff scientist Yifang Chen, MD, PhD, discovered that in the epidermis the exosome functions to target and destroy mRNAs that encode for transcription factors that induce differentiation. Specifically, they found that the exosome degrades a transcription factor called GRHL3 in epidermal progenitor cells, keeping the latter undifferentiated. Upon receiving differentiation inducing signals, the progenitor cells lose expression of certain subunits of the exosome which leads to higher levels of GRHL3 protein. This increase in GRHL3 levels promotes the differentiation of the progenitor cells.

"Without a functioning exosome in progenitor cells," said Sen, "the progenitor cells prematurely differentiate due to increased levels of GRHL3 resulting in loss of epidermal tissue over time."

Sen said the findings could have particular relevance if future research determines that mutations in exosome genes are linked to skin disorders or other diseases. "Recently there was a study showing that recessive mutations in a subunit of the exosome complex can lead to pontocerebellar hypoplasia, a rare neurological disorder characterized by impaired development or atrophy of parts of the brain," said Sen. "This may potentially be due to loss of progenitor cells. Once mutations in exosome complex genes are identified in either skin diseases or other diseases like pontocerebellar hypoplasia, it may be possible to design drugs targeting these defects."

Funding for this research came, in part, from the National Institutes of Health grant K01AR057828-04 and a Ray Thomas Edwards Award.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>