Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key Protein’s Newly Discovered Form and Function May Provide Novel Cancer Treatment Target

02.05.2012
St. Jude Children’s Research Hospital discovery that a protein vital for cell survival and immune balance has another form with a different function could yield additional cancer treatment strategy

Research led by St. Jude Children’s Research Hospital investigators suggests that safeguarding cell survival and maintaining a balanced immune system is just the start of the myeloid cell leukemia sequence 1 (MCL1) protein’s work.

Nearly 20 years after MCL1 was discovered, scientists have identified a second form of the protein that works in a different location in cells and performs a different function. This newly identified version is shorter and toils inside rather than outside mitochondria where it assists in production of chemical energy that powers cells. The research appears in today’s online edition of the scientific journal Nature Cell Biology.

The finding will likely aid the development of cancer drugs. Many cancers feature high levels of MCL1 or extra copies of the gene, and there is widespread interest in the protein for its potential to treat cancer. Until now, however, those efforts have focused solely on MCL1’s role on the outer mitochondrial membrane, where it blocks cell death via the apoptotic or cell suicide pathway. This study highlights another role.

“We believe this newly identified form of MCL1 that works inside the mitochondria is probably essential for tumor cell survival. If that proves to be correct, then strategies to block the protein from getting into mitochondria offer a new therapeutic approach for cancer treatment,” said Joseph Opferman, Ph.D., an associate member of the St. Jude Department of Biochemistry and a Pew Scholar in the Biomedical Sciences. He is the paper’s senior author.

Opferman has a longstanding interest in MCL1, which belongs to the BCL2 family of proteins that are critical regulators of apoptosis. Unlike other BCL2 proteins, MCL1 is required for embryonic development and for the survival of a variety of normal cell types. The protein is also essential for cancer cell survival.

Until now, however, researchers were unsure how to reconcile MCL1’s varied roles with its status as a member of the BCL2 family of proteins. BCL2 proteins were widely believed to work exclusively on the outer mitochondrial membrane.

“In this study, we show that MCL1 has two forms and two important, but completely different functions,” said Rhonda Perciavalle, Ph.D., a University of Tennessee Health Science Center graduate student in Opferman’s laboratory and the study’s first author. Along with working on the outer mitochondrial membrane to help protect cells from apoptosis, investigators demonstrated that MCL1 works internally to facilitate mitochondrial energy production in the mitochondrion’s matrix.

Using a variety of laboratory techniques, researchers showed that inside the mitochondrion, MCL1 promotes the normal structure of the inner membrane, where much of the work of energy production is done. The loss of the inner mitochondrial form of MCL1 hampers the ability of cells to produce energy, thus impeding their ability to proliferate.

“The results help explain why the loss of this single pro-survival molecule, MCL1, has such a dramatic impact. We are now working with tumor models to determine if this newly identified form of MCL1 is essential for cancer cells,” Opferman said. Perciavalle said the two forms might work together to protect cancer cells from apoptotic death and to provide them with the fuel and nutrients to sustain their unchecked growth and spread.

Work is also underway to learn precisely how MCL1 functions inside the mitochondria in both normal and cancer cells. Investigators are also interested in the relative importance of the two versions of MCL1 in different tissues under a variety of different conditions.

The other authors are Daniel Stewart, Brian Koss, John Lynch, Sandra Milasta, Madhavi Bathina, Jamshid Temirov, Stephane Pelletier, John Schuetz and Douglas Green, all of St. Jude; and Megan Cleland and Richard Youle, of the National Institute of Neurological Disorders and Stroke.

The research was funded in part by the National Institutes of Health, the American Cancer Society, a National Cancer Institute Cancer Center Support Grant and ALSAC.

St. Jude Children’s Research Hospital
Since opening 50 years ago, St. Jude Children’s Research Hospital has changed the way the world treats childhood cancer and other life-threatening diseases. No family ever pays St. Jude for the care their child receives and, for every child treated here, thousands more have been saved worldwide through St. Jude discoveries. The hospital has played a pivotal role in pushing U.S. pediatric cancer survival rates from 20 to 80 percent overall, and is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children. It is also a leader in the research and treatment of blood disorders and infectious diseases in children. St. Jude was founded by the late entertainer Danny Thomas, who believed that no child should die in the dawn of life. To learn more, visit www.stjude.org. Follow us on Twitter @StJudeResearch.
St. Jude Public Relations Contacts
Summer Freeman
(desk) 901-595-3061
(cell) 901-297-9861
summer.freeman@stjude.org
Carrie Strehlau
(desk) 901-595-2295
(cell) 901-297-9875
carrie.strehlau@stjude.org

Summer Freeman | Newswise Science News
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>