Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key protein molecule linked to diverse human chronic inflammatory diseases

17.09.2008
Liwu Li, associate professor of biological sciences at Virginia Tech, has revealed a common connection between the cellular innate immunity network and human chronic inflammatory diseases, including atherosclerosis, Type 2 Diabetes, and neurodegenerative diseases. The finding presents a viable cellular and molecular target for the diagnosis and treatment of serious human inflammatory diseases, according to Li.

"Researchers and physicians have long recognized that there is an association between these conditions. For example, obesity increases the risk of heart attack or stroke, Type 2 Diabetes or insulin resistance, and Alzheimer's Disease," said Li, who is the founding director of the Inflammation Center at Virginia Tech.

"Inflammation is the common mechanism," he said. "Inflammation is a double-edged sword. Proper inflammation is necessary to fend off infection and abnormal cell growth. On the other hand, excessive inflammation contributes to diverse chronic diseases, including atherosclerosis, diabetes, and lupus." However, the complex cellular and molecular networks controlling inflammation are still poorly understood, he said. "The lack of understanding impedes our progress in treating serious chronic inflammatory diseases."

In a series of studies published throughout the last decade*, Li's group has defined several critical signaling networks essential for the modulation of inflammation. In particular, a key cellular protein kinase named interlukin-1 receptor associated kinase 1 (IRAK-1) was shown to be critical for processing diverse inflammatory signals, including microbial products, cytokines, and insulin. Li's group discovered that excessive IRAK-1 activation is linked with the risk of atherosclerosis and diabetes. Using transgenic mice without the IRAK-1 gene, Li's group demonstrated that IRAK-1 deficient mice are protected from developing atherosclerosis and insulin resistance.

At the molecular level, Li's laboratory discovered that IRAK-1 prefers to phosphorylate transcription factors harboring the Serine-Proline motif including STAT-3 and NFAT. Subsequently, STAT-3 and NFAT are involved in modulating the expression of distinct inflammatory mediators responsible for the excessive activation of specialized macrophages and T cells. These cells eventually contribute to diverse inflammatory symptoms including cardiovascular diseases, diabetes, Alzheimer's diseases, and lupus. "Chemical compounds targeting this molecule will have enormous therapeutic potential," Li said.

"There is still a long way to go for finding the actual cure for these diseases," he said. "That is why we are combining expertise from various disciplines, including experimental biology and computational simulation. The Inflammation Center integrates faculties with expertise in experimental molecular biology, cutting edge imaging of inflamed cells and tissues, computational simulation of cellular signaling networks, human and animal studies, and nano-technologies designing novel intervention."

Virginia Tech Intellectual Properties Inc. (VTIP) filed a patent application for Li's discovery and its use as a diagnostic tool and treatment strategy. "This technology will still take some time before there is a product," said Li.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht New insights into the world of trypanosomes
23.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht New Test for Rare Immunodeficiency
23.08.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

New Test for Rare Immunodeficiency

23.08.2017 | Life Sciences

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>