Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key protein molecule linked to diverse human chronic inflammatory diseases

17.09.2008
Liwu Li, associate professor of biological sciences at Virginia Tech, has revealed a common connection between the cellular innate immunity network and human chronic inflammatory diseases, including atherosclerosis, Type 2 Diabetes, and neurodegenerative diseases. The finding presents a viable cellular and molecular target for the diagnosis and treatment of serious human inflammatory diseases, according to Li.

"Researchers and physicians have long recognized that there is an association between these conditions. For example, obesity increases the risk of heart attack or stroke, Type 2 Diabetes or insulin resistance, and Alzheimer's Disease," said Li, who is the founding director of the Inflammation Center at Virginia Tech.

"Inflammation is the common mechanism," he said. "Inflammation is a double-edged sword. Proper inflammation is necessary to fend off infection and abnormal cell growth. On the other hand, excessive inflammation contributes to diverse chronic diseases, including atherosclerosis, diabetes, and lupus." However, the complex cellular and molecular networks controlling inflammation are still poorly understood, he said. "The lack of understanding impedes our progress in treating serious chronic inflammatory diseases."

In a series of studies published throughout the last decade*, Li's group has defined several critical signaling networks essential for the modulation of inflammation. In particular, a key cellular protein kinase named interlukin-1 receptor associated kinase 1 (IRAK-1) was shown to be critical for processing diverse inflammatory signals, including microbial products, cytokines, and insulin. Li's group discovered that excessive IRAK-1 activation is linked with the risk of atherosclerosis and diabetes. Using transgenic mice without the IRAK-1 gene, Li's group demonstrated that IRAK-1 deficient mice are protected from developing atherosclerosis and insulin resistance.

At the molecular level, Li's laboratory discovered that IRAK-1 prefers to phosphorylate transcription factors harboring the Serine-Proline motif including STAT-3 and NFAT. Subsequently, STAT-3 and NFAT are involved in modulating the expression of distinct inflammatory mediators responsible for the excessive activation of specialized macrophages and T cells. These cells eventually contribute to diverse inflammatory symptoms including cardiovascular diseases, diabetes, Alzheimer's diseases, and lupus. "Chemical compounds targeting this molecule will have enormous therapeutic potential," Li said.

"There is still a long way to go for finding the actual cure for these diseases," he said. "That is why we are combining expertise from various disciplines, including experimental biology and computational simulation. The Inflammation Center integrates faculties with expertise in experimental molecular biology, cutting edge imaging of inflamed cells and tissues, computational simulation of cellular signaling networks, human and animal studies, and nano-technologies designing novel intervention."

Virginia Tech Intellectual Properties Inc. (VTIP) filed a patent application for Li's discovery and its use as a diagnostic tool and treatment strategy. "This technology will still take some time before there is a product," said Li.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>