Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key protein molecule linked to diverse human chronic inflammatory diseases

17.09.2008
Liwu Li, associate professor of biological sciences at Virginia Tech, has revealed a common connection between the cellular innate immunity network and human chronic inflammatory diseases, including atherosclerosis, Type 2 Diabetes, and neurodegenerative diseases. The finding presents a viable cellular and molecular target for the diagnosis and treatment of serious human inflammatory diseases, according to Li.

"Researchers and physicians have long recognized that there is an association between these conditions. For example, obesity increases the risk of heart attack or stroke, Type 2 Diabetes or insulin resistance, and Alzheimer's Disease," said Li, who is the founding director of the Inflammation Center at Virginia Tech.

"Inflammation is the common mechanism," he said. "Inflammation is a double-edged sword. Proper inflammation is necessary to fend off infection and abnormal cell growth. On the other hand, excessive inflammation contributes to diverse chronic diseases, including atherosclerosis, diabetes, and lupus." However, the complex cellular and molecular networks controlling inflammation are still poorly understood, he said. "The lack of understanding impedes our progress in treating serious chronic inflammatory diseases."

In a series of studies published throughout the last decade*, Li's group has defined several critical signaling networks essential for the modulation of inflammation. In particular, a key cellular protein kinase named interlukin-1 receptor associated kinase 1 (IRAK-1) was shown to be critical for processing diverse inflammatory signals, including microbial products, cytokines, and insulin. Li's group discovered that excessive IRAK-1 activation is linked with the risk of atherosclerosis and diabetes. Using transgenic mice without the IRAK-1 gene, Li's group demonstrated that IRAK-1 deficient mice are protected from developing atherosclerosis and insulin resistance.

At the molecular level, Li's laboratory discovered that IRAK-1 prefers to phosphorylate transcription factors harboring the Serine-Proline motif including STAT-3 and NFAT. Subsequently, STAT-3 and NFAT are involved in modulating the expression of distinct inflammatory mediators responsible for the excessive activation of specialized macrophages and T cells. These cells eventually contribute to diverse inflammatory symptoms including cardiovascular diseases, diabetes, Alzheimer's diseases, and lupus. "Chemical compounds targeting this molecule will have enormous therapeutic potential," Li said.

"There is still a long way to go for finding the actual cure for these diseases," he said. "That is why we are combining expertise from various disciplines, including experimental biology and computational simulation. The Inflammation Center integrates faculties with expertise in experimental molecular biology, cutting edge imaging of inflamed cells and tissues, computational simulation of cellular signaling networks, human and animal studies, and nano-technologies designing novel intervention."

Virginia Tech Intellectual Properties Inc. (VTIP) filed a patent application for Li's discovery and its use as a diagnostic tool and treatment strategy. "This technology will still take some time before there is a product," said Li.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>