Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key pathway in end-stage prostate cancer tumor progression blocked

21.07.2010
Prostate cancer advances when tumors become resistant to hormone therapy, which is the standard treatment for patients, and begin producing their own androgens.

Researchers at UT Southwestern Medical Center have found that blocking one of the enzymatic steps that allow the tumor to produce androgens could be the key in halting a tumor's growth.

The findings, appearing online and in the August issue of Endocrinology, suggest that this step might one day provide a new avenue of therapy for patients with end-stage prostate cancer. Health care experts estimate that more than 2 million men in the U.S. have prostate cancer, with more than 27,000 deaths related to the disease in 2009.

"We were able to block the androgen response, which is a central pathway for tumor progression," said Dr. Nima Sharifi, assistant professor of internal medicine and the study's senior author.

End-stage prostate tumors typically are treated with hormones that suppress the levels of the androgens, or male hormones like testosterone, that cause prostate cancer cells to grow. Eventually, however, the tumors become resistant to this therapy and resume their growth.

Using prostate cancer cell lines, Dr. Sharifi and his colleagues found that the hormone dehydroepiandrosterone (DHEA) is converted by the tumors into androgens. By blocking the enzyme 3â-hydroxysteroid dehydrogenase (3âHSD), which is responsible for the first enzymatic step that is required to convert DHEA to androgens, researchers were able to shut down the tumors' lifeline.

"Enzymes in general can make great drug targets, so this process conceivably could be targeted for the development of new treatments for end-stage prostate cancer, which has limited therapeutic options right now," said Dr. Sharifi, an investigator in UT Southwestern's Harold C. Simmons Comprehensive Cancer Center. "The goal would be to develop a drug that targets that enzyme to be used for the advanced, incurable stage."

No standard treatments currently target this enzyme, but there is proven clinical evidence that this pathway is central to driving tumor progression.

Other UT Southwestern researchers participating in the study were lead authors Dr. Kristen Evaul, postdoctoral researcher in internal medicine, and Rui Li, research assistant in internal medicine; Mahboubeh Papari-Zareei, research associate in internal medicine; and Dr. Richard Auchus, professor of internal medicine.

The study was supported by the Howard Hughes Medical Institute, the Prostate Cancer Foundation, the Army Medical Research and Materiel Command, the Burroughs Wellcome Fund and the Charles A. and Elizabeth Ann Sanders Chair in Translational Research.

Visit http://www.utsouthwestern.org/cancercenter to learn more about clinical services for cancer at UT Southwestern.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Connie Piloto | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>