Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Key pathway in end-stage prostate cancer tumor progression blocked

Prostate cancer advances when tumors become resistant to hormone therapy, which is the standard treatment for patients, and begin producing their own androgens.

Researchers at UT Southwestern Medical Center have found that blocking one of the enzymatic steps that allow the tumor to produce androgens could be the key in halting a tumor's growth.

The findings, appearing online and in the August issue of Endocrinology, suggest that this step might one day provide a new avenue of therapy for patients with end-stage prostate cancer. Health care experts estimate that more than 2 million men in the U.S. have prostate cancer, with more than 27,000 deaths related to the disease in 2009.

"We were able to block the androgen response, which is a central pathway for tumor progression," said Dr. Nima Sharifi, assistant professor of internal medicine and the study's senior author.

End-stage prostate tumors typically are treated with hormones that suppress the levels of the androgens, or male hormones like testosterone, that cause prostate cancer cells to grow. Eventually, however, the tumors become resistant to this therapy and resume their growth.

Using prostate cancer cell lines, Dr. Sharifi and his colleagues found that the hormone dehydroepiandrosterone (DHEA) is converted by the tumors into androgens. By blocking the enzyme 3â-hydroxysteroid dehydrogenase (3âHSD), which is responsible for the first enzymatic step that is required to convert DHEA to androgens, researchers were able to shut down the tumors' lifeline.

"Enzymes in general can make great drug targets, so this process conceivably could be targeted for the development of new treatments for end-stage prostate cancer, which has limited therapeutic options right now," said Dr. Sharifi, an investigator in UT Southwestern's Harold C. Simmons Comprehensive Cancer Center. "The goal would be to develop a drug that targets that enzyme to be used for the advanced, incurable stage."

No standard treatments currently target this enzyme, but there is proven clinical evidence that this pathway is central to driving tumor progression.

Other UT Southwestern researchers participating in the study were lead authors Dr. Kristen Evaul, postdoctoral researcher in internal medicine, and Rui Li, research assistant in internal medicine; Mahboubeh Papari-Zareei, research associate in internal medicine; and Dr. Richard Auchus, professor of internal medicine.

The study was supported by the Howard Hughes Medical Institute, the Prostate Cancer Foundation, the Army Medical Research and Materiel Command, the Burroughs Wellcome Fund and the Charles A. and Elizabeth Ann Sanders Chair in Translational Research.

Visit to learn more about clinical services for cancer at UT Southwestern.

This news release is available on our World Wide Web home page at

To automatically receive news releases from UT Southwestern via e-mail, subscribe at

Connie Piloto | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>