Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key mechanism identified in metastatic breast cancer

05.05.2010
Researchers at the University of Kentucky Markey Cancer Center zero in on how breast tumor cells break free and start to spread

Scientists at the University of Kentucky Markey Cancer Center have identified a key molecular mechanism in breast cancer that enables tumor cells to spread to adjacent or distant parts of the body in a process called metastasis. This finding opens the way to new lines of research aimed at developing treatments for metastatic breast cancer.

The research, led by Peter Zhou, associate professor of molecular and cellular biochemistry at UK, focused on the process by which tumor cells stop clinging to other cells and become motile, or able to spread throughout the body. The findings were published in an article in the EMBO Journal, the flagship publication of the European Molecular Biology Organization.

The increased motility of tumor cells at the initial step of metastasis is similar to a process called epithelial-mesenchymal transition (EMT), which is required for large-scale cell movement in embryonic development, tissue remodeling and wound healing. For example, during wound healing, cells at the edge of the wound undergo a EMT process and migrate to the middle for sealing the wound.

In all EMT processes, cells lose the expression of a cell-to-cell adhesion molecule called E-cadherin, which functions as a "molecular glue" that attaches cells to one another. Breast cancer cells usurp this process for invasion and metastasis. When this molecular glue is broken down, tumor cells start to migrate and spread throughout the body.

A protein called Snail acts as a master switch in the cell's nucleus to suppress E-cadherin expression and induce EMT in the cell. Previous research has shown Snail to be elevated in many types of cancer, particularly breast cancer. High levels of Snail have been linked to metastasis, tumor cell survival and tumor recurrence, and thus predict a poor clinical outcome for women with breast cancer. However, scientists are still not clear how Snail triggers the down-regulation of E-cadherin and induces metastasis in breast cancer.

Using a protein purification approach, Zhou and his colleagues found that Snail interacts and teams up with its "partner in crime," an enzyme called LSD1, inside the cell. LSD1 is known to change the structure of DNA and shut down the expression of many genes.

LSD1, which stands for lysine-specific demethylase-1 (and is chemically unrelated to the hallucinogen LSD), regulates the structure of the chromosome by removing a key methylation at histone H3, a core component that warps the DNA into compact conformation. This event triggers the "closure" of DNA structure and shuts down gene expression, such as E-cadherin. Zhou's team showed that the N-terminal portion of Snail molecular functions as a "molecular hook" for recruiting LSD1 to the E-cadherin gene, which, in turn, shuts down the expression of E-cadherin and induces tumor cell invasion and metastasis.

"This finding has significant clinical ramification, because chemical compounds or agents that can disrupt the interaction of Snail with LSD1 will have a great therapeutic potential of treating metastatic breast cancer," Zhou said. "Scientists at the Markey Cancer Center are currently exploring this idea and are keen to develop drugs that can treat metastatic cancer."

Breast cancer is the most common cancer in women. Approximately 90 percent of breast cancer deaths are caused by local invasion and distant metastasis of tumor cells, and the average survival after documentation of metastasis is approximately two years.

"An understanding of the mechanism underlying the biology of breast cancer metastasis will provide novel therapeutic approaches to combat this life-threatening disease," Zhou said.

The article, "The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1," received advance online publication in the EMBO Journal on April 13.

Keith Hautala | EurekAlert!
Further information:
http://www.uky.edu

Further reports about: DNA E-Cadherin EMBO EMT LSD1 breast cancer metastatic breast cancer scientists snail tumor cells wound healing

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>