Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Key mechanism identified in metastatic breast cancer

Researchers at the University of Kentucky Markey Cancer Center zero in on how breast tumor cells break free and start to spread

Scientists at the University of Kentucky Markey Cancer Center have identified a key molecular mechanism in breast cancer that enables tumor cells to spread to adjacent or distant parts of the body in a process called metastasis. This finding opens the way to new lines of research aimed at developing treatments for metastatic breast cancer.

The research, led by Peter Zhou, associate professor of molecular and cellular biochemistry at UK, focused on the process by which tumor cells stop clinging to other cells and become motile, or able to spread throughout the body. The findings were published in an article in the EMBO Journal, the flagship publication of the European Molecular Biology Organization.

The increased motility of tumor cells at the initial step of metastasis is similar to a process called epithelial-mesenchymal transition (EMT), which is required for large-scale cell movement in embryonic development, tissue remodeling and wound healing. For example, during wound healing, cells at the edge of the wound undergo a EMT process and migrate to the middle for sealing the wound.

In all EMT processes, cells lose the expression of a cell-to-cell adhesion molecule called E-cadherin, which functions as a "molecular glue" that attaches cells to one another. Breast cancer cells usurp this process for invasion and metastasis. When this molecular glue is broken down, tumor cells start to migrate and spread throughout the body.

A protein called Snail acts as a master switch in the cell's nucleus to suppress E-cadherin expression and induce EMT in the cell. Previous research has shown Snail to be elevated in many types of cancer, particularly breast cancer. High levels of Snail have been linked to metastasis, tumor cell survival and tumor recurrence, and thus predict a poor clinical outcome for women with breast cancer. However, scientists are still not clear how Snail triggers the down-regulation of E-cadherin and induces metastasis in breast cancer.

Using a protein purification approach, Zhou and his colleagues found that Snail interacts and teams up with its "partner in crime," an enzyme called LSD1, inside the cell. LSD1 is known to change the structure of DNA and shut down the expression of many genes.

LSD1, which stands for lysine-specific demethylase-1 (and is chemically unrelated to the hallucinogen LSD), regulates the structure of the chromosome by removing a key methylation at histone H3, a core component that warps the DNA into compact conformation. This event triggers the "closure" of DNA structure and shuts down gene expression, such as E-cadherin. Zhou's team showed that the N-terminal portion of Snail molecular functions as a "molecular hook" for recruiting LSD1 to the E-cadherin gene, which, in turn, shuts down the expression of E-cadherin and induces tumor cell invasion and metastasis.

"This finding has significant clinical ramification, because chemical compounds or agents that can disrupt the interaction of Snail with LSD1 will have a great therapeutic potential of treating metastatic breast cancer," Zhou said. "Scientists at the Markey Cancer Center are currently exploring this idea and are keen to develop drugs that can treat metastatic cancer."

Breast cancer is the most common cancer in women. Approximately 90 percent of breast cancer deaths are caused by local invasion and distant metastasis of tumor cells, and the average survival after documentation of metastasis is approximately two years.

"An understanding of the mechanism underlying the biology of breast cancer metastasis will provide novel therapeutic approaches to combat this life-threatening disease," Zhou said.

The article, "The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1," received advance online publication in the EMBO Journal on April 13.

Keith Hautala | EurekAlert!
Further information:

Further reports about: DNA E-Cadherin EMBO EMT LSD1 breast cancer metastatic breast cancer scientists snail tumor cells wound healing

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>