Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Key leukemia defense mechanism discovered by VCU Massey Cancer Center

Virginia Commonwealth University Massey Cancer Center researcher Steven Grant, M.D., and a team of VCU Massey researchers have uncovered the mechanism by which leukemia cells trigger a protective response when exposed to a class of cancer-killing agents known as histone deacetylase inhibitors (HDACIs). The findings, published in the Journal of Biological Chemistry, could lead to more effective treatments in patients with leukemia and other cancers of the blood.

"Our findings provide new insights into the ways such cancer cells develop resistance to and survive treatment," says Grant, associate director for translational research and professor of medicine. "This knowledge will now allow us to focus our efforts on strategies designed to prevent these self-protective responses, potentially rendering the cancer cell incapable of defense and increasing the effectiveness of therapy."

The discovery centers on modification of a protein known as NEMO. Researchers have known for some time that HDACIs trigger a protective response in leukemia cells by activating a survival signaling pathway known as NF-êB, which limits the ability of HDACIs to initiate a cancer cell suicide program known as apoptosis. However, it was previously thought this process occurred through activation of receptors residing on the cancer cell surface. What VCU Massey researchers discovered was that HDACIs initially induce DNA damage within the cell nucleus, leading to modification of the NEMO protein, which then triggers the cytoprotective NF-êB pathway. By disrupting modifications of the NEMO protein, NF-êB activation can be prevented, and as a consequence, the cancer-killing capacity of HDACIs increases dramatically.

HDACIs represent an approved form of treatment for certain forms of lymphoma, and VCU Massey Cancer Center has been working for over seven years to develop strategies designed to improve their effectiveness in leukemia and other blood cancers. Grant's team is now focusing on ways to capitalize on this discovery by designing strategies that interrupt NEMO modifications through the use of pharmacologic agents and other means.

"Our goal is to move these findings from the laboratory to the bedside as quickly as we possibly can. There are currently several drugs in early stages of development that hold promise in disrupting the NEMO-related NF-êB pathway, but further research defining their safety and effectiveness will be required before we can incorporate them into new therapies," says Grant.

Grant's research team included Roberto Rosato, Ph.D., of the Department of Medicine at Virginia Commonwealth University; Paul Dent, Ph.D., Universal Professor for Signal Transduction at VCU Massey Cancer Center and vice chair of the Department of Neurosurgery at Virginia Commonwealth University; and Paul Fisher, M.Ph., Ph.D., Thelma Newmeyer Corman Endowed Chair in Cancer Research at VCU Massey Cancer Center, department head of Human and Molecular Genetics and director of the VCU Institute of Molecular Medicine.

About VCU Massey Cancer Center

VCU Massey Cancer Center is one of only 66 National Cancer Institute-designated institutions in the country that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers a wide range of clinical trials throughout Virginia, oftentimes the most trials in the state, and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at or call 877-4-MASSEY for more information.

John Wallace | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>