Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to future medical breakthroughs is systems biology

06.01.2009
Crucial breakthroughs in the treatment of many common diseases such as diabetes and Parkinson's could be achieved by harnessing a powerful scientific approach called systems biology, according to leading scientists from across Europe.

In a Science Policy Briefing released today by the European Science Foundation, the scientists provide a detailed strategy for the application of systems biology to medical research over the coming years.

Systems biology is a rapidly advancing field that combines empirical, mathematical and computational techniques to gain understanding of complex biological and physiological phenomena. For example, dozens, or even hundreds, of proteins can be involved in signalling processes that ensure the proper functioning of a cell. If such a signalling network is disturbed in any way, diseases such as cancer and diabetes can result.

Conventional approaches of biology do not have the capacity to unravel these elaborate webs of interactions, which is why drug design often fails. Simply knocking out one target molecule in a biochemical pathway is turning out to be a flawed strategy for drug design, because cells are able to find alternative routes. It is a similar scenario to setting up a roadblock: traffic will grind to a standstill for a short time, but soon motorists will start turning around and using side-roads to get to their destination. Just as the network of roads allows alternative routes to be used, the network of biochemical pathways can enable a disease to by-pass a drug.

Systems biology is now shedding light on these complex phenomena by producing detailed route maps of the subcellular networks. These will make it possible for scientists to develop smarter therapeutic strategies - for example by disrupting two or three key intersections on a biochemical network. This could lead to significant advances in the treatment of disease and help with the shrinking pipeline of pharmaceutical companies using traditional reductionist approaches to drug discovery.

The new policy document, produced by the Life Sciences and Medical Sciences units of the Strasbourg-based European Science Foundation (ESF) calls for a co-ordinated strategy towards systems biology across Europe. The scientists have pinpointed several key disease areas that are ripe for a systems biology approach. These include cancer and diabetes, inflammatory diseases and disorders of the central nervous system.

The report's authors state that the recommendations outlined in the Science Policy Briefing provide a more specific, practical guide towards achieving major breakthroughs in biomedical systems biology, thereby covering issues that had not been previously addressed in sufficient detail. In particular we identify and outline the necessary steps of promoting the creation of pivotal biomedical systems biology tools and facilitating their translation into crucial therapeutic advances.

The report highlights some recent successes where mathematical modelling has played a key role. The conclusions from these examples are that success was achieved when quantitative data became available; that even simple mathematical models can be of practical use and that the interdisciplinary process leading to the formulation of a model is in itself of intrinsic value.

This Science Policy Briefing is the contribution of the ESF to the EC funded Specific Support Action entitled "Advancing Systems Biology for Medical Applications" (SSA LSSG-CT-2006-037673). The recommendations resulted from ten workshops, in which more than 110 acknowledged experts from across Europe participated.

The report's authors believe that, if this document succeeds in prodding European institutions into supporting systems biology, the implementation of the recommendations presented will propel Europe to the forefront of research in systems biology and, in particular, help this interdisciplinary field to fulfil its promise of making a reality of personalised medicine, combinatorial therapy, shortened drug discovery and development, better targeted clinical trials and reduced animal testing.

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>