Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key function of protein discovered for obtaining blood stem cells as source for transplants

26.07.2012
With an eye to the future, the results will let cells be obtained in the laboratory that can be transplanted into leukaemia patients with no compatible donors.

Researchers from IMIM (Hospital del Mar Medical Research Institute) have deciphered the function executed by a protein called ¦Â-catenin in generating blood tissue stem cells.


Detail of the aorta of a 10.5 days mouse embryo where we can see in green the cells with activated b-catenin. Some of these cells will be in the future hematopoietic stem cells.

These cells, also called haematopoietic, are used as a source for transplants that form part of the therapies to fight different types of leukaemia. The results obtained will open the doors to produce these stem cells in the laboratory and, thus, improve the quality and quantity of these surgical procedures. This will let patients with no compatible donors be able to benefit from this discovery in the future.

The study, executed jointly with the Erasmus Medical Center Stem Cell of Rotterdam and published in the Journal of Experimental Medicine, analysed a chain of molecular reactions that are produced inside some embryonic cells and that play a role in the creation of a haematopoietic stem cells. ¡®Our study contributes to deciphering the code that makes a precursor cell that is only found in the embryo become a haematopoietic stem cell. In order for that to happen, the ¦Â-catenin protein must be activated for a while and with a specific dosage¡¯ explains Dr Anna Bigas, head of the IMIM Stem Cells & Cancer Group and lead researcher.

This protein also plays a fundamental role in the cells that originate and maintain some types of leukaemia. ¡®The parallelisms between normal and leukaemia stem cells prove to us that the molecular pathways that regulate both populations are the same. For this reason, our work will help us understand the origin of these diseases¡¯, argues Dr Bigas.

In addition to embryonic stem cells, each of our body¡¯s organs has another type of stem cell that has the capacity to regenerate all the cells for the tissue in question. However, they are only formed in the embryonic stage and are maintained for the rest of our lives. Haematopoietic stem cells are part of the blood and, when they are transplanted, they are the inception for all of this tissue¡¯s cells.

At present, transplanting these cells is dependent on the availability of compatible donors. Nonetheless, there is still a high percentage of patients with no donors and that, therefore, cannot be submitted to this procedure. The results of this article lay the foundations so that, in the future, these patients can benefit from a source of laboratory-generated haematopoietic stem cells created from compatible embryonic cells or other types of expressly transformed cells.

Article of reference:

¡°Hematopoietic stem cell development requires transient Wnt/ ¦Â-catenin activity¡± Cristina Ruiz-Herguido, Jordi Guiu, Teresa D¡¯Altri , Julia Ingl¨¦s-Esteve, Elaine Dzierzak, Lluis Espinosa and Anna Bigas Journal of Experimental Medicine 10.1084/jem.20120225

Marta Calsina | EurekAlert!
Further information:
http://www.imim.es

More articles from Life Sciences:

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>