Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key found to how tumor cells invade the brain in childhood cancer

19.06.2009
New finding may lead to drugs that lower the risk of relapse in some leukemia patients

Despite great strides in treating childhood leukemia, a form of the disease called T-cell acute lymphoblastic leukemia (T-ALL) poses special challenges because of the high risk of leukemic cells invading the brain and spinal cord of children who relapse.

Now, a new study in the June 18, 2009, issue of the journal Nature by scientists at NYU School of Medicine reveals the molecular agents behind this devastating infiltration of the central nervous system. The finding may lead to new drugs that block these agents and thus lower the risk of relapse.

T-ALL, a blood-borne cancer in which the bone marrow makes too many lymphocytes, or white blood cells, strikes several hundred children and adolescents in the U.S. annually. While greater than 90% percent go into remission through a combination of chemotherapy and radiation, up to one third of this group end up relapsing. These patients are at particular risk for tumor cells to invade the brain and spinal cord, and to prevent this all patients receive chemotherapy injections into the central nervous system and in some cases cranial irradiation—approaches that cause dangerous side effects, including secondary tumors and potentially permanent cognitive and developmental deficits.

“In general, T-cell acute lymphoblastic leukemia is treatable with chemotherapy and radiation,” said Ioannis Aifantis, PhD, associate professor of pathology and co-director of the Cancer Stem Cell Program at the NYU Cancer Institute, who led the new study. “But you have a very high rate of relapse. And after the relapse, it is not treatable because the cancer occurs in tricky places like the central nervous system,” said Dr. Aifantis, who is also an Early Career Scientist at the Howard Hughes Medical Institute.

“We are very proud of this research and very excited about the potential implications for new therapeutic approaches to prevent or reduce the spread of leukemic cells into the central nervous system,” said Vivian S. Lee MD, PhD, MBA, the vice dean for science, senior vice president and chief scientific officer of NYU Langone Medical Center.

In the new study, Dr. Aifantis and his colleagues found that a key protein receptor embedded on the outer surface of leukemic cells is responsible for infiltrating the brain and spinal cord. “What we have found is that leukemic cells over-express this receptor.” said Dr. Aifantis, “If you knock out this receptor, these cells will not go to the brain under any circumstances.”

Previous research had strongly implicated a famous gene regulator called Notch1 in the progression of T-ALL. The Notch1 gene (a mutated version gives fruit flies notched wings) is an oncogene, or cancer-causing gene, in humans. Certain kinds of mutations in this gene have been found in nearly half of all T-ALL patients, and current estimates suggest that the gene’s regulatory influence might be implicated in nearly 90 percent of all T-ALL cases.

For their new study, Dr. Aifantis and his colleagues first introduced overactive forms of Notch1 into mice. As a result, the mice developed leukemia and the leukemic cells efficiently infiltrated the inner layers of the membrane covering the brain. “What happens is that the leukemic cells get into the cerebrospinal fluidthat protects our brain and spine, where they fill up the space and they can affect brain function, either by secreting chemicals and toxic factors or even by simple pressure,” Dr. Aifantis said.

His team then examined an array of other mouse genes to identify candidates that might fall under the regulatory spell of Notch1 to promote the brain and spinal cord infiltration. The screen revealed a promising gene for a protein named CCR7, which is embedded on the surface of lymphocytes. This chemokine receptor, as it’s known, normally senses and responds to small chemical attractants called chemokines, which act like recruitment signals for lymphocytes to converge on a specific site during the body’s response to infection or injury. In leukemia, however, these lymphocytes proliferate abnormally.

CCR7 was already known as a key player in normal lymphocyte migration and as a binding partner of two chemokines named CCL19 and CCL21. Previous studies had implicated these protein interactions in the metastasis of other tumors such as melanomas and breast cancers. Dr. Aifantis’s team also discovered that the gene for CCR7 was overactive in four of five T-ALL cell lines derived from human patients, bolstering suspicions that it played a central role in the disease. Conversely, a mutation that knocked out Notch1 also led to dramatically reduced CCR7 levels.

To characterize CCR7’s potential role in T-ALL, the researchers used two sets of mice: one in which the receptor was turned on, and a second in which it was turned off. When the team delivered an identical number of human-derived leukemic cells to both sets of mice, those with the CCR7 chemokine receptor turned off lived almost twice as long. Using bioluminescent imaging, the researchers quickly understood why: animals with the active CCR7 receptor had many more tumors. Tellingly, the T-ALL cells had infiltrated the brain and spinal cord of those mice.

Further experiments suggested that when healthy mice received leukemic cells in which the gene for CCR7 had been turned off, the cells could not migrate to the brain even though they reached other body tissues. As a result, the mice survived significantly longer than counterparts with an active copy of the gene. On the other hand, introducing a normal version of the same gene to mice otherwise lacking it was enough to recruit leukemic cells to the brain and spine.

“We wanted to determine whether CCR7 by itself was sufficient for entry into the central nervous system and that’s what this experiment shows,” Dr. Aifantis said. “By changing one specific gene, you now have your function back.”

Finally, the researchers identified the small protein that acted as the “come hither” signal for the CCR7 protein receptors. One candidate, CCL21, was undetectable in leukemic mice. But a second, CCL19, appeared in tiny veins of the brain near the infiltrating tumor cells. When the researchers introduced leukemic cells carrying a gene for CCR7 to mice that naturally lacked the CCL19 chemokine, the mice survived longer, suggesting that their increased life spans might be due to a disrupted interaction of the two proteins. The leukemic cells had no trouble infiltrating other tissue like the lymph nodes, but were completely incapable of infiltrating the brains of CCL19-deficient mice, the researchers report.

“Perhaps there are antibodies or small molecules that can block the interaction between these two proteins or reduce their interactions,” Dr. Aifantis said, “and hopefully that could be used as a type of prophylactic treatment to prevent a relapse in the central nervous system among patients who have already been treated for leukemia.” Such a treatment, he said, could prove a good alternative to the intensive and often poorly tolerated radiation and chemotherapy now used to try to block such a relapse.

The study was led by Dr. Silvia Buonamici, a post-doctoral fellow in the laboratory of Dr. Aifantis in the Department of Pathology and the NYU Cancer Institute, and in the Helen L. and Martin S. Kimmel Stem Cell Center at NYU Langone Medical Center. Other study investigators are; Thomas Trimarchi, Maria Grazia Ruocco, Linsey Reavie, Severine Cathelin, Yevgeniy Lukyanov, Jen-Chieh Tseng, Filiz Sen, Mengling Li, Elizabeth Newcomb, Jiri Zavadil, Daniel Meruelo, Sherif Ibrahim, David Zagzag, and Michael L. Dustin from NYU Langone Medical Center; Brenton G. Mar, Apostolos Klinakis, and Argiris Efstratiadis from Columbia University Medical Center; Eric Gehrie and Jonathan S. Bromberg from Mount Sinai School of Medicine; and Martin Lipp from the Max Delbrück Center for Molecular Medicine in Berlin.

The study was supported by grants from the National Institutes of Health, the American Cancer Society, the Dana Foundation, The Chemotherapy Foundation, the Alex’s Lemonade Stand Foundation, the Lauri Strauss Leukemia foundation, the G&P Foundation, an NYU School of Medicine Molecular Oncology and Immunology training grant, the American Society of Hematology, the Juvenile Diabetes Research Foundation, the National Cancer Institute, a gift from the Berrie Foundation, and a fellowship from the Jane Coffin Childs Memorial Fund for Medical Research.

About NYU Langone Medical Center

Located in New York City, NYU Langone Medical Center is one of the nation's premier centers of excellence in health care, biomedical research, and medical education. For over 168 years, NYU physicians and researchers have made countless contributions to the practice and science of health care. Today the Medical Center consists of NYU School of Medicine, including the Smilow Research Center, the Skirball Institute of Biomolecular Medicine, and the Sackler Institute of Graduate Biomedical Sciences; the three hospitals of NYU Hospitals Center, Tisch Hospital, a 705-bed acute-care general hospital, Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind, and NYU Hospital for Joint Diseases, a leader in musculoskeletal care; and such major programs as the NYU Cancer Institute, the NYU Child Study Center, and the Hassenfeld Children's Center for Cancer and Blood Disorders.

About NYU Cancer Institute

The NYU Cancer Institute is an NCI-designated cancer center. Its mission is to discover the origins of human cancer and to use that knowledge to eradicate the personal and societal burden of cancer in our community, the nation and the world. The center and its multidisciplinary team of experts provide access to the latest treatment options and clinical trials along with a variety of programs in cancer prevention, screening, diagnostics, genetic counseling and supportive services.

Dorie Klissas | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>