Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key factor combines day and night to hold back morning

18.02.2011
As in manmade timepieces, the movements of the genetic clockworks that lie behind circadian cycles involve a remarkable amount of complexity. Researcher's from RIKEN's Laboratory for Systems Biology report how delayed feedback repression is a key factor in mammalian clock function.

The mammalian circadian clock is thought to arise from the interactions of around 20 transcription factors with specific DNA sequences associated with morning, day, and night expression. Existing models of this genetic network can readily explain the basis for the day and night activities, but the mechanism underlying morning expression remains incompletely understood.

It is thought that delayed negative feedback exerted by the morning (E/E? box) inhibitor Cryptochrome 1 (Cry1), which is itself expressed in evening, plays an important role in keeping the biological clock on time. But just how it achieves this effect is unknown.

Maki Ukai-Tadenuma and Rikuhiro G. Yamada of the Laboratory for Systems Biology (Hiroki R. Ueda, Project Leader), along with colleagues in the Universities of Memphis (USA) and Fribourg (Switzerland), now report how delayed feedback repression is a key factor in mammalian clock function. Published in Cell, this work shows the role of Cry1 as mediator of delayed negative feedback repression and fleshes out the current understanding of the circadian circuitry.

The team began by looking into the basis for the evening expression of Cry1 using reporter genes coding for the luciferase protein to detect transcriptional activity, and found that the Cry1 promoter region induces the expression of genes carrying the daytime expression motif. A closer look at Cry1’s DNA revealed that its intronic region contains a separate sequence that induces nighttime clock genes. They next stitched together a construct including these promoter and intron regions, and ran another reporter assay to observe its behavior, and found that its expression switched on in circadian evening, suggesting that this in-between expression time is a result of the combination of day and night regulatory elements. To test this model, the team tried to rescue clock function in cells with homozygous deletions of both Cry1 and Cry2 by inducing the evening expression of exogenous Cry1. They found that while the Cry1 promoter region alone was ineffective, when the promoter and intron regions were used in conjunction, the gene’s circadian rhythmicity was restored.

Using this same set-up, Ukai-Tadenuma and Yamada next tried changing the onset time of Cry1 expression, and found that as expression neared midday, meaning that the normal phase delay was reduced, the amplitude of circadian oscillations grew smaller, in line with predictions. Similarly, prolonging the delay of exogenous Cry1 expression caused an increase in the length of the restored cycle.

The team's findings were recapitulated by a relatively simple phase vector model, which not only successfully reproduces the findings from the current study, but numerous other aspects of the circadian clock network as well.

"In 1990, Paul Hardin at Texas A&M pointed out the importance of delayed feedback repression in biological clocks, but it has taken 21 years to work out the mechanism behind it," says Ueda. "We will continue exploring whether the current minimal transcriptional network model is complete, or whether new regulatory systems remain to be discovered."

[ Contact ]
Douglas Sipp : sipp(at)cdb.riken.jp
TEL : +81-78-306-3043
RIKEN CDB, Office for Science Communications and International Affairs

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>