Key to evolutionary fitness: Cut the calories

However, recent research has shown that, even when food is abundant, energy intake reaches a limit, even in animals with high nutrient demands, such as lactating females.

Scientists at the Research Institute of Wildlife Ecology in Vienna suggest that this is due to active control of maternal investment in offspring in order to maintain long-term reproductive fitness.

The research, to be presented by Dr Teresa Valencak at the Society for Experimental Biology Annual Meeting in Glasgow has shown that, when their energy reserves are low or when their offspring are kept in cooler temperatures, Brown hares are able to increase their energy turnover and rate of milk production above that normally observed.

This indicates that, ordinarily, the hares are operating at below their maximum capacity and shows that this is not due to any kind of physiological constraint, such as length of digestive tract or maximum capacity of mammary glands. Also, as the hares were provided with plentiful food, there could be no limitation of energy turnover due to food availability.

The way that females regulated their energy expenditure according to pup demand and their own fat reserves but did not exceed certain levels fitted with the group's theory that using energy at close to the maximum rate has costs for animals which may compromise their ability to successfully reproduce in the future.

If a hare puts most of its energy into a litter of pups then it will have little left over for growth and body repairs for example, which may shorten its life or make it less able to produce or care for young in the future. By actively limiting the rate of energy turnover, a mother can prevent this and maintain a higher level of reproductive success over her lifetime.

Media Contact

Tess Livermore EurekAlert!

More Information:

http://www.sebiology.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors