Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping viruses at bay

12.08.2014

Our immunosensory system detects virus such as influenza via specific characteristics of viral ribonucleic acid.

Previously, it was unclear how the immune system prevents viruses from simply donning molecular camouflage in order to escape detection. An international team of researchers from the University of Bonn Hospital and the London Research Institute have now discovered that our immunosensory system attacks viruses on a molecular level. In this way, a healthy organism can keep rotaviruses, a common cause of diarrheal epidemics, at bay. The results have been published in the renowned journal "Nature".


Marion Goldeck, Dr. Martin Schlee (sitting), Dr. Winfried Barchet, Thomas Zillinger and Prof. Dr. med. Gunther Hartmann, Director of the Institute of Clinical Chemistry and Clinical Pharmacology.

(c) Photo: Claudia Siebenhüner/UKB

Every day our bodies are confronted with a variety of viruses and other pathogens. Our immune systems must constantly decide what is "foreign" and what is part of the body itself so that the body's own cells are not inadvertently attacked by its own defense troops. Viruses imitate the body's own structures and thus represent a special challenge for the immune system.

In this way, the immune system works like a sensory organ which continuously detects dangers and initiates the appropriate defense mechanisms. This immunosensory system searches for viruses by surveilling the body's own ribonucleic acid (RNA) for RNA with characteristics typical of viruses. In RNA viruses, RNA is the carrier of the virus's genetic information. To reproduce, viruses must multiply their RNA, and this multiplication leads to the development of molecular patterns which are in turn used to detect the viruses themselves.

It has been known for some time that RIG-I-like receptors (RLRs) play a crucial role in the detection of RNA viruses. These receptors act as “fire alarms” within the immune system: When RNA molecules from viruses bind to these receptors, a signal chain is initiated that leads to the production of substances that can ultimately combat the viruses.

"During amplification of viral RNA, a so-called triphosphate group, consisting of three phosphates, inevitably develops at one end of the newly formed RNA. A few years ago, we were the first to show that it is this triphosphate group which allows RIG-I to detect newly formed viral RNA. Previously, it was believed that viruses can elude this detection via simple deceptive molecular maneuvers," said Prof. Gunther Hartmann, Director of the Institute of Clinical Chemistry and Clinical Pharmacology of the University of Bonn Hospital.

RIG-I: A molecular attack against viruses

Together with scientists from the Immunobiology Laboratory of the London Research Institute in England, the scientists working with Dr. Martin Schlee and Prof. Dr. Gunther Hartmann at the University of Bonn Hospital investigated the immunorecognition of reoviruses. This family includes rotaviruses, which cause serious diarrheal illness and are responsible for the deaths of more than a million children worldwide every year.

The immunorecognition of reoviruses was previously unclear since their RNA does not contain a triphosphate group. Now the researchers discovered that, surprisingly, an RNA structure with two phosphates at the end of the RNA double-strand in reoviruses can likewise trigger RIG-I and alarm the immune system.

"This finding has significance for the detection of RNA viruses that extends far beyond reoviruses: It is comparatively simple for a virus to molecularly change the triphosphate in the course of its development,” said Dr. Schlee. The first step in this process is generally to split off the outermost phosphate of the triphosphate group, which leads to a diphosphate. This step is necessary for the virus to perform further modifications to its RNA and thus don a molecular cloak of invisibility.

However, any form of further molecular camouflage is made extremely difficult for the virus due to the additional highly specialized RIG-I-mediated immunorecognition of the diphosphate. Thus, RIG-I attacks the virus on both fronts, significantly restricting its further development.

"Without the investigation into reoviruses, we would not have discovered this universal mechanism of virus detection," said Prof. Hartmann. Since members of the reovirus family also contain a diphosphate group in their viral RNA, a healthy organism can also detect these viruses and curb these illnesses within a few days. However, malnourished children cannot summon these reserves, and the illness can become life-threatening.

The immune system: a sensory system for health

The researchers see a major application potential in the decoding of virus detection: "We are already currently developing artificially produced copies of viral RNA in order to alert our immune system to viruses in a targeted fashion," said Prof. Hartmann who is also director of the project "Novel Anti-infective Agents" at the German Centre for Infection Research (DZIF). Prof Hartmann is also currently speaker of the Cluster of Excellence ImmunoSensation, which is supported by a 28-million Euro grant from the German Research Foundation (DFG). The Cluster brings together experts from a variety of disciplines at the site and connects them to international research structures.

Publication: Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5’diphosphates, “Nature”, DOI: 10.1038/nature13590

Contact information:

Prof. Dr. med. Gunther Hartmann
Director of the Institute of Clinical Chemistry
and Clinical Pharmacology
of the University of Bonn Hospital
Tel. 0228/28716080
E-Mail: Gunther.Hartmann@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

Further reports about: DFG Friedrich-Wilhelms-Universität RIG-I RNA healthy illness modifications structures

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>