Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping viruses at bay

12.08.2014

Our immunosensory system detects virus such as influenza via specific characteristics of viral ribonucleic acid.

Previously, it was unclear how the immune system prevents viruses from simply donning molecular camouflage in order to escape detection. An international team of researchers from the University of Bonn Hospital and the London Research Institute have now discovered that our immunosensory system attacks viruses on a molecular level. In this way, a healthy organism can keep rotaviruses, a common cause of diarrheal epidemics, at bay. The results have been published in the renowned journal "Nature".


Marion Goldeck, Dr. Martin Schlee (sitting), Dr. Winfried Barchet, Thomas Zillinger and Prof. Dr. med. Gunther Hartmann, Director of the Institute of Clinical Chemistry and Clinical Pharmacology.

(c) Photo: Claudia Siebenhüner/UKB

Every day our bodies are confronted with a variety of viruses and other pathogens. Our immune systems must constantly decide what is "foreign" and what is part of the body itself so that the body's own cells are not inadvertently attacked by its own defense troops. Viruses imitate the body's own structures and thus represent a special challenge for the immune system.

In this way, the immune system works like a sensory organ which continuously detects dangers and initiates the appropriate defense mechanisms. This immunosensory system searches for viruses by surveilling the body's own ribonucleic acid (RNA) for RNA with characteristics typical of viruses. In RNA viruses, RNA is the carrier of the virus's genetic information. To reproduce, viruses must multiply their RNA, and this multiplication leads to the development of molecular patterns which are in turn used to detect the viruses themselves.

It has been known for some time that RIG-I-like receptors (RLRs) play a crucial role in the detection of RNA viruses. These receptors act as “fire alarms” within the immune system: When RNA molecules from viruses bind to these receptors, a signal chain is initiated that leads to the production of substances that can ultimately combat the viruses.

"During amplification of viral RNA, a so-called triphosphate group, consisting of three phosphates, inevitably develops at one end of the newly formed RNA. A few years ago, we were the first to show that it is this triphosphate group which allows RIG-I to detect newly formed viral RNA. Previously, it was believed that viruses can elude this detection via simple deceptive molecular maneuvers," said Prof. Gunther Hartmann, Director of the Institute of Clinical Chemistry and Clinical Pharmacology of the University of Bonn Hospital.

RIG-I: A molecular attack against viruses

Together with scientists from the Immunobiology Laboratory of the London Research Institute in England, the scientists working with Dr. Martin Schlee and Prof. Dr. Gunther Hartmann at the University of Bonn Hospital investigated the immunorecognition of reoviruses. This family includes rotaviruses, which cause serious diarrheal illness and are responsible for the deaths of more than a million children worldwide every year.

The immunorecognition of reoviruses was previously unclear since their RNA does not contain a triphosphate group. Now the researchers discovered that, surprisingly, an RNA structure with two phosphates at the end of the RNA double-strand in reoviruses can likewise trigger RIG-I and alarm the immune system.

"This finding has significance for the detection of RNA viruses that extends far beyond reoviruses: It is comparatively simple for a virus to molecularly change the triphosphate in the course of its development,” said Dr. Schlee. The first step in this process is generally to split off the outermost phosphate of the triphosphate group, which leads to a diphosphate. This step is necessary for the virus to perform further modifications to its RNA and thus don a molecular cloak of invisibility.

However, any form of further molecular camouflage is made extremely difficult for the virus due to the additional highly specialized RIG-I-mediated immunorecognition of the diphosphate. Thus, RIG-I attacks the virus on both fronts, significantly restricting its further development.

"Without the investigation into reoviruses, we would not have discovered this universal mechanism of virus detection," said Prof. Hartmann. Since members of the reovirus family also contain a diphosphate group in their viral RNA, a healthy organism can also detect these viruses and curb these illnesses within a few days. However, malnourished children cannot summon these reserves, and the illness can become life-threatening.

The immune system: a sensory system for health

The researchers see a major application potential in the decoding of virus detection: "We are already currently developing artificially produced copies of viral RNA in order to alert our immune system to viruses in a targeted fashion," said Prof. Hartmann who is also director of the project "Novel Anti-infective Agents" at the German Centre for Infection Research (DZIF). Prof Hartmann is also currently speaker of the Cluster of Excellence ImmunoSensation, which is supported by a 28-million Euro grant from the German Research Foundation (DFG). The Cluster brings together experts from a variety of disciplines at the site and connects them to international research structures.

Publication: Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5’diphosphates, “Nature”, DOI: 10.1038/nature13590

Contact information:

Prof. Dr. med. Gunther Hartmann
Director of the Institute of Clinical Chemistry
and Clinical Pharmacology
of the University of Bonn Hospital
Tel. 0228/28716080
E-Mail: Gunther.Hartmann@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

Further reports about: DFG Friedrich-Wilhelms-Universität RIG-I RNA healthy illness modifications structures

More articles from Life Sciences:

nachricht Protein Shake-Up
27.03.2015 | Oak Ridge National Laboratory

nachricht How did the chicken cross the sea?
27.03.2015 | Michigan State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>