Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Keeping traffic moving

An enzyme helps control the extension of cellular tendrils by regulating the delivery of supplies needed for growth

The body of the adult fruit fly is covered with hair-like bristles (Fig. 1) that act as sensory organs for detecting tactile stimuli. Each one consists of a single cell that has gradually elongated over the course of pupal development, reinforced by bundles of actin protein filaments.

Figure 1: An electron microscope image of a sensory bristle from the body of the fruit fly Drosophila melanogaster. Copyright : 2011 Tetsuhisa Otani

The signaling protein IKKå helps to regulate this process by controlling the organization of these actin bundles, but a recent study from Shigeo Hayashi and colleagues at the RIKEN Center for Development Biology in Kobe has revealed that IKKå also promotes bristle growth by managing the trafficking of cellular cargoes (1).

Initial experiments by Hayashi and team showed that activated IKKå is primarily found at the tips of developing bristles, where growth-associated cargoes are most likely to be unloaded. “Membranes and associated proteins are water-insoluble and thus do not easily diffuse to distant sites, and one model is that distal trafficking actively delivers such insoluble materials as packages,” explains Hayashi.

Membrane-enclosed bubbles known as endosomes are a core component in this process, using so-called motor proteins to travel along routes defined by a microscopic ‘railway’ of fibers known as microtubules. The researchers found that this trafficking is severely disrupted in the absence of IKKå, with endosomes remaining trapped at the ends of the bristle rather than being distributed throughout the cell.

Hayashi and colleagues determined that IKKå interacts with a protein called Nuf, which links the motor protein Dynein with a key endosome-associated protein and thus contributes to directional transport of cargoes toward the tip of the growing bristle. Upon arrival at the tip, IKKå-mediated inactivation of Nuf sends the newly emptied endosomes on a return trip, thereby completing a ‘recycling’ process. “Such endosomal movement occurs in other cell types, but the shape of bristles makes this shuttling very prominent,” says Hayashi. “I think this is a very good example of how a highly specialized cell and its shape can reveal a mechanism of general significance.”

Many other cells grow in a similar fashion, ranging from the tiny branches that help connect neurons to the hairs on plant roots that assist in water absorption, and Hayashi speculates that similar regulatory mechanisms may also operate in these contexts. Moving forward, he and his colleagues will further explore the apparently central coordinating role of IKKå. “We are currently studying actin as a target,” says Hayashi, “and we are also studying upstream regulators of IKKå, hoping to uncover a comprehensive view of this signaling pathway.”

The corresponding author for this highlight is based at the Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology

Journal information

(1) Otani, T., Oshima, K., Onishi, S., Takeda, M., Shinmyozu, K., Yonemura, S. & Hayashi, S. IKKå regulates cell elongation through recycling endosome shuttling. Developmental Cell 20, 219–232 (2011).

gro-pr | Research asia research news
Further information:

Further reports about: RIKEN cell type motor protein sensory organ synthetic biology

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>