Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping to time counter-intuitively

28.03.2011
For more than 20 years, theoretical mathematical models have predicted that a delay built into a negative feedback system is at the heart of the molecular mechanism that governs circadian clocks in mammalian cells.

Now, the first experimental proof of this theory has been provided by an international research team led by molecular biologists and information scientists from the RIKEN Center for Developmental Biology in Kobe[1].

The demonstration of the feedback delay should lead to a better understanding of how cellular clocks function, and therefore how mammals adjust to the regular daily and seasonal changes in their environment. The work could also open the way to the development of treatments for circadian disorders, such as seasonal affective disorder, jet lag and even bipolar disorder.

Mammals not only show daily rhythms of waking and sleeping, but also body temperature, hormone secretion, and many other biological activities. The master cellular clocks that act as timers for these patterns are found in the suprachiasmatic nucleus of the brain. The molecular mechanism is built around a negative feedback system involving cryptochrome (Cry) genes, which code for proteins that repress their own activation by binding with the products of two other genes Bmal1 and Clock. The whole clock system is orchestrated by the interaction of these proteins with a complex array of promoters and enhancers, genetic sequences that regulate gene activity.

Within these clock-gene regulators are short sequences often known as clock-controlled elements. Different clock-controlled elements bind with the different proteins likely to be prevalent at different times of the day or night. The researchers carefully modified these sequences, and observed the impact on circadian rhythms of cells. They focused their studies in particular on the gene Cry1, and observed how the rhythm of its activity was affected by the modifications of clock-controlled elements within promoters and enhancers.

In addition to revealing a previously unknown clock-controlled element in the Cry1 promoter, the researchers also found that different combinations of clock-controlled elements led to different lengths of delay in the activation of Cry1. They demonstrated that this delay of Cry1 was required for the circadian clock to function (Fig. 1).

Based on these findings, they proposed a simple model of the mammalian circadian clock and now want to construct it using artificial components. “We think further experimental and theoretical analyses of this minimal circuit will lead to a deeper understanding of the mammalian circadian clock,” say team members Rikuhiro Yamada and Maki Ukai-Tadenuma.

The corresponding author for this highlight is based at the Laboratory for System Biology, RIKEN Center for Developmental Biology

Journal information

[1] Ukai-Tadenuma, M., Yamada, R.G., Xu, H., Ripperger, J.A., Liu, A.C. & Ueda, H.R. Delay in feedback repression by Cryptochrome 1 is required for circadian clock function. Cell 144, 268–281(2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6555
http://www.researchsea.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>