Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping to time counter-intuitively

28.03.2011
For more than 20 years, theoretical mathematical models have predicted that a delay built into a negative feedback system is at the heart of the molecular mechanism that governs circadian clocks in mammalian cells.

Now, the first experimental proof of this theory has been provided by an international research team led by molecular biologists and information scientists from the RIKEN Center for Developmental Biology in Kobe[1].

The demonstration of the feedback delay should lead to a better understanding of how cellular clocks function, and therefore how mammals adjust to the regular daily and seasonal changes in their environment. The work could also open the way to the development of treatments for circadian disorders, such as seasonal affective disorder, jet lag and even bipolar disorder.

Mammals not only show daily rhythms of waking and sleeping, but also body temperature, hormone secretion, and many other biological activities. The master cellular clocks that act as timers for these patterns are found in the suprachiasmatic nucleus of the brain. The molecular mechanism is built around a negative feedback system involving cryptochrome (Cry) genes, which code for proteins that repress their own activation by binding with the products of two other genes Bmal1 and Clock. The whole clock system is orchestrated by the interaction of these proteins with a complex array of promoters and enhancers, genetic sequences that regulate gene activity.

Within these clock-gene regulators are short sequences often known as clock-controlled elements. Different clock-controlled elements bind with the different proteins likely to be prevalent at different times of the day or night. The researchers carefully modified these sequences, and observed the impact on circadian rhythms of cells. They focused their studies in particular on the gene Cry1, and observed how the rhythm of its activity was affected by the modifications of clock-controlled elements within promoters and enhancers.

In addition to revealing a previously unknown clock-controlled element in the Cry1 promoter, the researchers also found that different combinations of clock-controlled elements led to different lengths of delay in the activation of Cry1. They demonstrated that this delay of Cry1 was required for the circadian clock to function (Fig. 1).

Based on these findings, they proposed a simple model of the mammalian circadian clock and now want to construct it using artificial components. “We think further experimental and theoretical analyses of this minimal circuit will lead to a deeper understanding of the mammalian circadian clock,” say team members Rikuhiro Yamada and Maki Ukai-Tadenuma.

The corresponding author for this highlight is based at the Laboratory for System Biology, RIKEN Center for Developmental Biology

Journal information

[1] Ukai-Tadenuma, M., Yamada, R.G., Xu, H., Ripperger, J.A., Liu, A.C. & Ueda, H.R. Delay in feedback repression by Cryptochrome 1 is required for circadian clock function. Cell 144, 268–281(2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6555
http://www.researchsea.com

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>