Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping an Eye on the Surroundings

13.08.2008
Protein folding: terahertz absorption spectroscopy detects changes in protein–water network

Water is no passive spectator of biological processes; it is an active participant. Protein folding is thus a self-organized process in which the actions of the solvent play a key role.

So far, the emphasis in studies of protein folding processes has been on observation of the protein backbone and its side chains. Researchers led by Martin Gruebele and Martina Havenith have now been able to detect changes in the protein–water network during protein folding in real time.

As they report in the journal Angewandte Chemie, this team of scientists at the University of Illinois (Urbana, USA) and the Ruhr University in Bochum (Germany) used a spectroscopic technique called KITA (kinetic terahertz absorption) to make their observations.

Terahertz (THz) radiation consists of electromagnetic waves in the submillimeter range, putting it between the infrared and microwave ranges. Efficient sources of THz radiation are now available, making it possible to directly measure the absorption of biomolecules in aqueous buffers on the picosecond time scale. Both the skeletal movements of proteins and the collective motions of water molecules surrounding proteins occur on this time scale. The research team recently demonstrated that THz-range absorption spectroscopy is a sensitive method for the investigation of the water shell that surrounds proteins. In the layers immediately surrounding the protein, the water molecules are networked to each other differently than in pure water. Their absorption of THz radiation at certain frequencies is thus changed.

The way in which a protein folds to a very large extent determines its function. The folding process is very fast. The movements of the protein backbone influence the solvent, and the dynamics of the solvent can in turn influence the dynamics of the protein—thus playing an important role in the folding process. Kinetic THz absorption (KITA) registers the damping and phase-shifting of an electrical THz field caused by the folding of a protein. Comparison with results obtained by other methods confirms that KITA detects reorientations of the interactions between a protein and its water shell in an early phase of the folding process.

Author: Martin Gruebele, University of Illinois, Urbana (USA), http://www.scs.uiuc.edu/%7Emgweb/

Title: Real-Time Detection of Protein–Water Dynamics upon Protein Folding by Terahertz Absorption Spectroscopy

Angewandte Chemie International Edition 2008, 47, No. 34, 6486–6489, doi: 10.1002/anie.200802281

Martin Gruebele | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.scs.uiuc.edu/%7Emgweb/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>