Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping cells in good shape

28.09.2015

An experiment aboard the International Space Station looked at how cells change shape in microgravity and the ways those changes affect their function

People often talk about how important it is to stay in shape, something humans usually can accomplish with exercise and a healthy diet, and other habits. But chances are, few of us ever think about the shape of our individual cells.


This image depicts filling the Cytospace experiment unit.

Credits: Kayser Italia

An experiment aboard the International Space Station looked at how cells change shape in microgravity and the ways those changes affect their function. Cells have a cytoskeleton, a matrix of proteins that serve as a rigid structure for a cell much as our bones serve as a skeleton for our bodies.

The Cell Shape and Expression, or Cytospace, investigation examined how physical forces - including shear stress, stiffness, surface tension, and gravity - change the relationships among these proteins, interfering with cell architecture and changing the geometric form, or shape, of the cell. These changes in cell shape in turn affect certain signaling pathways in the cell and alter its patterns of gene expression.

"These cytoskeleton modifications enhance reframing of the cell shape and lead to significant changes in cell function and behavior," explains principal investigator Marco Vukich, Ph.D., with Kayser Italia in Italy. Shear stress in particular is known to cause several changes that can result in cell death and that affect cell division and permeability in addition to gene expression.

In microgravity, this series of events - a change in cytoskeleton structure leading to alteration of the cell shape and, then, biochemical and genetic changes in the cell - ultimately result in impairment of biological function and can even lead to disease.

Researchers suspect that microgravity can cause these changes in the cytoskeleton structure and subsequent gene-expression changes. If the research confirms this correlation, then it may be possible to address some of the negative effects of microgravity by stabilizing the cell cytoskeleton. For example, there may be drugs that could be used to counteract damage to cells caused by exposure to microgravity.

The cell cytoskeleton is involved in several human diseases here on Earth as well, including connective tissue diseases, cancer, and osteoporosis.

"Several human diseases are known to have a more or less dramatic involvement of the cytoskeleton," says co-investigator Alessandro Palombo, Ph.D., department of molecular and clinical medicine at Sapienza University of Rome. "Cytoskeleton changes are thought to play a pivotal role in orchestrating the cross-talk among cells and their microenvironment. Disrupting that cross-talk is likely to foster both cancer onset and its progression."

A better understanding of the relationship between cell shape and gene expression could advance development of drugs to treat these diseases, too.

For the investigation, breast cancer cells were cultured at normal gravity on the ground, in simulated microgravity on the ground, and in true microgravity aboard the space station. The cell cultures sent into space were returned to Earth for analysis.

Before long, astronauts and those of us here on Earth may be giving more thought to keeping our cells in shape, along with our bodies.

Rachel Hobson | EurekAlert!

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>