Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping brain development in focus

27.12.2010
A newly characterized protein promotes embryonic brain formation by hiding a receptor with the potential to undermine this process.

The various bone morphogenetic protein (BMP) signaling factors play an important role in early neural development in the vertebrate embryo. However, maturation of these tissues ultimately depends on the coordinated activity of factors that suppress BMP activity within the neuroectoderm, a cell population that ultimately gives rise to the nervous system.

Yoshiki Sasai and colleagues at the RIKEN Center for Developmental Biology in Kobe have now revealed a novel regulator of BMP signaling, Jiraiya1, which they originally identified in a screen for genes activated by the BMP inhibitor Chordin in the African clawed frog, Xenopus laevis2. “Jiraiya was intriguing as it encoded a novel membrane protein that had no homology to known proteins, and its expression was neural-specific,” says Sasai.

Unexpectedly, his team determined that the Jiraiya protein acts as a specific inhibitor of BMPRII, one of two core subunits of the BMP receptor, within the neuroectoderm (Fig. 1). BMPRII chemically modifies BMPRI in response to BMP binding; BMPRI subsequently activates downstream components of the signaling cascade. Initial experiments showed that Jiraiya specifically interferes with signaling at a point between ligand binding and BMPRI activation.

When overexpressed in cultured embryonic frog cells, Jiraiya depleted BMPRII from the plasma membrane by sequestering it within complexes in the cytoplasm. Evidence suggests that this protein physically interferes with the delivery of newly synthesized receptor molecules to the cell surface.

BMPRII is part of a larger family of receptor proteins that are relatively similar to one another, but features a distinctive ‘C-terminal tail domain’ (TD) that contains within it the specific Jiraiya-binding motif. This enigmatic ‘EVNNNG’ sequence appears to be a unique feature of BMPRII, although it is closely conserved in receptor homologues from other species. Transplantation of the motif onto a different receptor, ActRIIA, was sufficient to make that protein susceptible to similar Jiraiya-mediated inhibition. “The most intriguing part is that it acts only on the type II subunit of BMPR via this tail-domain whose role in dynamic signaling modulation had not been known,” says Sasai.

He and his colleagues conclude that Jiraiya appears to represent an important mechanism for the cell-specific inactivation of BMP-responsive pathways, and thereby helps define the boundaries of neural tissue development. The Jiraiya gene is found in a broad range of vertebrate species, although expression in the mouse embryo does not seem to follow the same neural-specific pattern of localization seen in frog embryos. Sasai hopes to further clarify its role in mammalian development in future studies.

The corresponding author for this highlight is based at the Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology

Journal information

Aramaki, T., Sasai, N., Yakura, R. & Sasai, Y. Jiraiya attenuates BMP signaling by interfering with Type II BMP receptors in neuroectodermal patterning. Developmental Cell 19, 547–561 (2010).

Sasai, N., Mizuseki, K. & Sasai, Y. Requirement of FoxD3-class signaling for neural crest determination in Xenopus. Development 128, 2525–2536 (2001).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>