Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping brain development in focus

27.12.2010
A newly characterized protein promotes embryonic brain formation by hiding a receptor with the potential to undermine this process.

The various bone morphogenetic protein (BMP) signaling factors play an important role in early neural development in the vertebrate embryo. However, maturation of these tissues ultimately depends on the coordinated activity of factors that suppress BMP activity within the neuroectoderm, a cell population that ultimately gives rise to the nervous system.

Yoshiki Sasai and colleagues at the RIKEN Center for Developmental Biology in Kobe have now revealed a novel regulator of BMP signaling, Jiraiya1, which they originally identified in a screen for genes activated by the BMP inhibitor Chordin in the African clawed frog, Xenopus laevis2. “Jiraiya was intriguing as it encoded a novel membrane protein that had no homology to known proteins, and its expression was neural-specific,” says Sasai.

Unexpectedly, his team determined that the Jiraiya protein acts as a specific inhibitor of BMPRII, one of two core subunits of the BMP receptor, within the neuroectoderm (Fig. 1). BMPRII chemically modifies BMPRI in response to BMP binding; BMPRI subsequently activates downstream components of the signaling cascade. Initial experiments showed that Jiraiya specifically interferes with signaling at a point between ligand binding and BMPRI activation.

When overexpressed in cultured embryonic frog cells, Jiraiya depleted BMPRII from the plasma membrane by sequestering it within complexes in the cytoplasm. Evidence suggests that this protein physically interferes with the delivery of newly synthesized receptor molecules to the cell surface.

BMPRII is part of a larger family of receptor proteins that are relatively similar to one another, but features a distinctive ‘C-terminal tail domain’ (TD) that contains within it the specific Jiraiya-binding motif. This enigmatic ‘EVNNNG’ sequence appears to be a unique feature of BMPRII, although it is closely conserved in receptor homologues from other species. Transplantation of the motif onto a different receptor, ActRIIA, was sufficient to make that protein susceptible to similar Jiraiya-mediated inhibition. “The most intriguing part is that it acts only on the type II subunit of BMPR via this tail-domain whose role in dynamic signaling modulation had not been known,” says Sasai.

He and his colleagues conclude that Jiraiya appears to represent an important mechanism for the cell-specific inactivation of BMP-responsive pathways, and thereby helps define the boundaries of neural tissue development. The Jiraiya gene is found in a broad range of vertebrate species, although expression in the mouse embryo does not seem to follow the same neural-specific pattern of localization seen in frog embryos. Sasai hopes to further clarify its role in mammalian development in future studies.

The corresponding author for this highlight is based at the Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology

Journal information

Aramaki, T., Sasai, N., Yakura, R. & Sasai, Y. Jiraiya attenuates BMP signaling by interfering with Type II BMP receptors in neuroectodermal patterning. Developmental Cell 19, 547–561 (2010).

Sasai, N., Mizuseki, K. & Sasai, Y. Requirement of FoxD3-class signaling for neural crest determination in Xenopus. Development 128, 2525–2536 (2001).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>