Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Junk DNA“ May Give Rise to Evolutionary Innovation

02.11.2011
Heidelberg scientists have found that evolution can produce novelty from scratch

The vast majority of the human genome consists of DNA without any apparent function, so-called “junk DNA”. A study conducted by the scientists Dr. Laurence Ettwiller and Michael Eichenlaub at Heidelberg University's Centre for Organismal Studies now highlights this “dark matter” of the genome as a resource for evolutionary novelty.


The green fluorescent protein (GFP) labels in green the domains where the “de novo“ enhancers are active in the medaka fish (Oryzias latipes).
Image: Ettwiller / Eichenlaub


Japanese freshwater fish Medaka
Image: Ettwiller / Eichenlaub

The scientists found that even small changes in functionally inactive “junk DNA“ are sufficient to create essential control elements in gene regulation known as enhancers. The results of the study will be published on 1 November 2011 in “PLoS Biology”.

Genetic variation in humans is not primarily due to differences in the 1.5 percent of DNA that code for gene products. Rather, experts today assume that most differences between humans are the result of changes in those DNA sequences that control gene regulation, i.e. the formation of gene products such as proteins. Enhancers are an essential component in the control mechanism of gene regulation. Changes in enhancers can lead to disease and malformation; on the other hand, they carry the potential for evolutionary innovation.

Michael Eichenlaub and Laurence Ettwiller have shown that such innovation can occur through “de novo” formation of new enhancers, arising from slight changes in the DNA that had no regulatory activity before. This finding contrasts with the general view amongst evolutionary scientists that novelty mainly arises from modification of pre-existing functional components of the genome. This view has generally led scientists to focus their attention on the loss and modification of functional elements, neglecting variations in the “junk DNA“, which makes up about 97 percent of genetic information. “This work brings such neglected regions of the genome to the forefront as a putative ‘breeding ground‘ for new enhancers“, says Laurence Ettwiller, who headed the study.

To prove the existence of those new enhancers, the Heidelberg scientists designed an assay in the Japanese freshwater fish Medaka to capture rare events in which the sequence of a novel enhancer could be traced to other related species and validated these sequences experimentally. In several cases, they found evidence of a “de novo“ formation of new enhancers. “Even though this study has been conducted in fish, the same mechanisms apply to the human genome”, says Dr. Ettwiller.

“The study demonstrates that the slow but persistent changes that occur in DNA in each generation are sufficient to eventually lead to the apparition of new functions”, explains Michael Eichenlaub. “The methods we have established here could help to identify the changes that have contributed to the evolution of our species and explain the 1.23 percent of the genetic information that differ between the chimp’s and our genomes”, adds Dr. Ettwiller.

For more information, visit http://www.cos.uni-heidelberg.de/forschung/ettwiller/index.html.

Original publication:
Eichenlaub MP, Ettwiller L: De Novo Genesis of Enhancers in Vertebrates. PLoS Biol 9(11): e1001188. doi:10.1371/journal.pbio.1001188
Contact:
Dr. Laurence Ettwiller
Centre for Organismal Studies
Phone +49 6221 546495
laurence.ettwiller@cos.uni-heidelberg.de
Communications and Marketing
Press Office, phone +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de
http://www.cos.uni-heidelberg.de/forschung/ettwiller/index.html

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>