Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Junk DNA” drives cancer growth

03.05.2010
Researchers from the Charité University Medical School, the Max Delbrück Center for Molecular Medicine (MDC) in Berlin, Germany and the University of Leeds, UK, have discovered a new driving force behind cancer growth.

Their studies have identified how ‘junk’ DNA promotes the growth of cancer cells in patients with Hodgkin’s lymphoma. Dr Stephan Mathas (Charité, MDC) and Professor Constanze Bonifer (University of Leeds) suspect that these pieces of ‘junk’ DNA, called ‘long terminal repeats’, can play a role in other forms of cancer as well. The researchers uncovered the process by which this ‘junk DNA’ is made active, promoting cancer growth (Nature Medicine, doi 10.1038/nm.2129)*.

“We have shown this is the case in Hodgkin’s lymphoma, but the exact same mechanism could be involved in the development of other forms of blood cancer,” said Prof. Bonifer. “This would have implications for diagnosis, prognosis, and therapy of these diseases.”

‘Long terminal repeats’ (LTRs) are a form of ‘junk DNA’ - genetic material that has accumulated in the human genome over millions of years. Although LTRs originate from viruses and are potentially harmful, they are usually made inactive when embryos are developing in the womb.

If this process of inactivation doesn’t work, then the LTRs could activate cancer genes, a possibility that was suggested in previous animal studies. This latest research has now demonstrated for the first time that these ‘rogue’ active LTRs can drive the growth of cancer in humans.

The work focused on cancerous cells of Hodgkin’s lymphoma (the Hodgkin-/Reed Sternberg cells) that originate from white blood cells (antibody-producing B cells). Unusually, this type of lymphoma cell does not contain a so-called ‘growth factor receptor’ that normally controls the growth of other B-cells.

They found that the lymphoma cells’ growth was dependent on a receptor that normally regulates the growth of other immune cells, but it is not usually found in B-cells. However in this case, the Hodgkin-/Reed Sternberg cells ‘hijacked’ this receptor (CSF1R, the colony stimulating factor 1 receptor) for their own purposes by activating some of the ‘junk DNA’. In fact the lymphoma cells activated hundreds, if not thousands, of LTRs all over the genome, not just one.

Hodgkin-/Reed Sternberg cells may not be the only cells that use this method to subvert normal controls of cell growth. The researchers found evidence of the same LTRs activating the same growth receptor in anaplastic large cell lymphoma, another blood cancer.

The consequences of such widespread LTR activation are currently still unclear, according to the study’s authors. Such processes could potentially activate other genes involved in tumour development. It could also affect the stability of chromosomes of lymphoma cells, a factor that may explain why Hodgkin-/Reed Sternberg cells gain many chromosomal abnormalities over time and become more and more malignant.

*De–repression of an endogenous long terminal repeat activates the CSF1R proto–oncogene in human lymphoma
Björn Lamprecht1,2,10, Korden Walter3,10, Stephan Kreher1,2,10, Raman Kumar4, Michael Hummel5, Dido Lenze5, Karl Köchert1,2, Mohamed Amine Bouhlel3, Julia Richter6, Eric Soler7, Ralph Stadhouders7, Korinna Jöhrens5, Kathrin D. Wurster1,2, David Callen4, Michael F. Harte8, Maciej Giefing6,9, Rachael Barlow3, Harald Stein5, Ioannis Anagnostopoulos5, Martin Janz1,2, Peter N. Cockerill3, Reiner Siebert6, Bernd Dörken1,2, Constanze Bonifer3, and Stephan Mathas1,2
1Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany; 2Hematology, Oncology and Tumorimmunology, Charité University Medical School, CVK, 13353 Berlin, Germany; 3Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, UK; 4Breast Cancer Genetics Group, Discipline of Medicine, University of Adelaide and Hanson Institute, Adelaide, South Australia 5000, Australia; 5Institute of Pathology, Charité University Medical School, CBF, 12200 Berlin, Germany; 6Institute of Human Genetics, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; 7Erasmus MC, University Medical Center, Department of Cell Biology, 3015 GE Rotterdam; 8Cytopia Research Pty Ltd, Richmond, Victoria 3121, Australia; 9Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.

10These authors contributed equally to this work

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/
Paula Gould
University of Leeds
press office
Tel 44 (0)113 343 8059
email p.a.gould@leeds.ac.uk

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://limm.leeds.ac.uk/research_sections/experimental_haematology/

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>