Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jumping Crystals - Kinematic analysis of light-induced jumping crystals

30.07.2013
Live beings are not the only things that can move around – it turns out that small crystals can also rotate or even jump.

Scientists from United Arab Emirates and Russia have now systematically examined crystals that move when irradiated by light. In the journal Angewandte Chemie they present the first quantitative kinematic analysis of this phenomenon, which they have termed the photosalient effect.



When irradiated with UV light, micrometer- to millimeter-sized crystals of the cobalt coordination complex [Co(NH3)5(NO2)]Cl(NO3) cover distances over thousands of times larger than themselves. Why do they do this?

The nitrite ligand (NO2) is normally bound to the central cobalt ion through its nitrogen atom. This bond is broken by the irradiation and the ligand rotates a little to use one of its oxygen atoms to bind to the cobalt instead. This isomerization produces strain in the crystal. The strain is dissipated through movement and fracturing. The crystals jump and may even explode.

A team led by Panèe Naumov (New York University Abu Dhabi) and Elena V. Boldyreva (Russian Academy of Sciences and Novosibirsk State University) has now systematically analyzed this effect with a microscope-mounted, high-speed camera. The scientists distinguished the following phenomena: 1) splitting of the crystal into two roughly equally sized pieces, 2) splintering off of small pieces, 3) explosion of the crystal, 4) displacement without visible splintering or lifting off the surface, and 5) rolling or jumping. These result in some complex movement sequences of the crystals and their splinters.

The distance covered depends on the duration and intensity of the irradiation. The crystals only jump after a certain period of latency during which stress builds up. When it reaches a threshold, the stress is released all at once. Smaller crystals start flipping sooner than larger ones. Interestingly, the intensity of the irradiation also determines the type of effect. Intermediate intensities primarily cause rolling and jumping, higher intensities cause more splitting off of debris. The highest intensities primarily cause the crystals to split into two equal pieces.

The scientists are convinced that the effects result from a cooperative mechanism. The rotation of individual ligands causes small intramolecular perturbations that are spread and amplified over the network of hydrogen bonds connecting the ions within the crystal lattice. This network acts like a spring that is wound by the irradiation and relaxes through the movement or splitting of the crystal.

The rigidity of the springs was confirmed in precise single-crystal diffraction experiments where the sample was exposed to high pressure.

The conversion of light energy to mechanical movement could be useful for the design of materials that imitate the movement of animals, or dynamic technical components in devices like nanomachines.

About the Author
Dr. Panèe Naumov is an Associate Professor at the Division of Natural Sciences and Mathematics in New York University Abu Dhabi. His research interests are in the effects of external stimuli to ordered solid matter. He has been actively developing new analytical methods for direct observation and analysis of unusual states, unstable species, and exotic molecules.

Author: Panèe Naumov, New York University Abu Dhabi (United Arab Emirates), https://nyuad.nyu.edu/research/centers-institutes/naumov-group.html

Title: Dynamic Single Crystals: Kinematic Analysis of Photoinduced Crystal Jumping

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201303757

The original article is available from our online pressroom at http://pressroom.angewandte.org.

Contact: Editorial office: angewandte@wiley-vch.de

Panèe Naumov | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>