Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Jumping Crystals - Kinematic analysis of light-induced jumping crystals

Live beings are not the only things that can move around – it turns out that small crystals can also rotate or even jump.

Scientists from United Arab Emirates and Russia have now systematically examined crystals that move when irradiated by light. In the journal Angewandte Chemie they present the first quantitative kinematic analysis of this phenomenon, which they have termed the photosalient effect.

When irradiated with UV light, micrometer- to millimeter-sized crystals of the cobalt coordination complex [Co(NH3)5(NO2)]Cl(NO3) cover distances over thousands of times larger than themselves. Why do they do this?

The nitrite ligand (NO2) is normally bound to the central cobalt ion through its nitrogen atom. This bond is broken by the irradiation and the ligand rotates a little to use one of its oxygen atoms to bind to the cobalt instead. This isomerization produces strain in the crystal. The strain is dissipated through movement and fracturing. The crystals jump and may even explode.

A team led by Panèe Naumov (New York University Abu Dhabi) and Elena V. Boldyreva (Russian Academy of Sciences and Novosibirsk State University) has now systematically analyzed this effect with a microscope-mounted, high-speed camera. The scientists distinguished the following phenomena: 1) splitting of the crystal into two roughly equally sized pieces, 2) splintering off of small pieces, 3) explosion of the crystal, 4) displacement without visible splintering or lifting off the surface, and 5) rolling or jumping. These result in some complex movement sequences of the crystals and their splinters.

The distance covered depends on the duration and intensity of the irradiation. The crystals only jump after a certain period of latency during which stress builds up. When it reaches a threshold, the stress is released all at once. Smaller crystals start flipping sooner than larger ones. Interestingly, the intensity of the irradiation also determines the type of effect. Intermediate intensities primarily cause rolling and jumping, higher intensities cause more splitting off of debris. The highest intensities primarily cause the crystals to split into two equal pieces.

The scientists are convinced that the effects result from a cooperative mechanism. The rotation of individual ligands causes small intramolecular perturbations that are spread and amplified over the network of hydrogen bonds connecting the ions within the crystal lattice. This network acts like a spring that is wound by the irradiation and relaxes through the movement or splitting of the crystal.

The rigidity of the springs was confirmed in precise single-crystal diffraction experiments where the sample was exposed to high pressure.

The conversion of light energy to mechanical movement could be useful for the design of materials that imitate the movement of animals, or dynamic technical components in devices like nanomachines.

About the Author
Dr. Panèe Naumov is an Associate Professor at the Division of Natural Sciences and Mathematics in New York University Abu Dhabi. His research interests are in the effects of external stimuli to ordered solid matter. He has been actively developing new analytical methods for direct observation and analysis of unusual states, unstable species, and exotic molecules.

Author: Panèe Naumov, New York University Abu Dhabi (United Arab Emirates),

Title: Dynamic Single Crystals: Kinematic Analysis of Photoinduced Crystal Jumping

Angewandte Chemie International Edition, Permalink to the article:

The original article is available from our online pressroom at

Contact: Editorial office:

Panèe Naumov | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>