Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jumonjd3: a key for unlocking neuronal stem cell fate

05.11.2008
A novel role for the protein, Jumonjd3, as an epigenetic modulator in the neuronal differentiation of embryonic stem cells, has recently been uncovered at the IFOM-IEO Campus in Milan – a step forward in the understanding of cellular reprogramming and in the development of innovative cancer therapies.

A protein named Jumonjd3 has been identified by a team of scientists at the IFOM-IEO Campus in Milan, as the molecular key required for starting up the differentiation process and for issuing neuronal “identity cards” to embryonic stem cells.

The research, conducted by a team of scientists led by Giuseppe Testa, Director of the Stem Cell Epigenetics Programme at the Department of Experimental Oncology at IEO, focuses on a particular group of ‘bivalent’ genes that, during embryonic stem cell differentiation, are either activated or repressed, bestowing stem cells with a neuronal identity

Epigenetic modifications and cellular identity

The cells that make up our body all share the same set of approximately 30,000 genes, inherited from the single cell (i.e., the fertilized egg) that started everything off. However, during functional differentiation, when cells assume their identity (e.g., they become a neuronal, blood or liver cell) in order to carry out a specific role in the body, only a particular set of genes within the cell are activated, while the others are silenced. This selective control of gene expression occurs at the epigenetic level (from the Greek epi- “in addition to-” genes), through chemical modifications that control gene expression by activating or repressing specific genes without altering the underlying DNA sequence. An important epigenetic mechanism controlling the functional differentiation of embryonic stem cells is histone methylation. Histones are a family of proteins that play a critical role in ordering DNA filaments within chromatin. Histones form the protein core of nucleosomes, repeating units in chromatin, around which DNA is wrapped and compacted. Like all proteins, histones are made up of amino acids arranged in a linear chain: one end of this chain, known as the amino-terminal tail, protrudes from the nucleosome core and is, therefore, freely available to undergo epigenetic modifications. Specific protein complexes control the methylation of this tail during cellular differentiation, leading to chromatin remodeling and the activation/repression of specific target genes.

In particular, the methylation of two amino acids in histone H3, lysine 4 and lysine 27, has opposing effects on gene expression in stem cells: if lysine 4 is methylated the gene is expressed, if lysine 27 is methylated the gene is silenced.

A breakdown in the methylation machinery can significantly affect the identity of cells and may cause malformations in embryos or, in adults, a number of pathological conditions, in particular, cancers. It is not surprising, therefore, that in the so-called big killers (cancer of the colon, lung, breast and prostate), abnormal epigenetic modifications (i.e., epimutations) have been detected, such as the erroneous repression of genes by methylation of histone H3 on lysine 27.

For decades, histone methylation was considered as an irreversible chemical event; however, recently it has been observed that demethylation (i.e., the removal of methyl groups) of specific genes can occur under certain conditions during cellular differentiation. This process is, at present, poorly understood, but the scientific community is working on different fronts to identify proteins involved in demethylation. An important contribution to our understanding of demethylation has recently been made by researchers at the IFOM-IEO Campus in Milan: a centre of excellence founded from IFOM (FIRC Institute of Molecular Oncology) and IEO (European Institute of Oncology) and amongst the most prestigious centres, at the international level, working on epigenetic research.

Jumonjd3 and the dynamic identity of neuronal cells

Research conducted by Giuseppe Testa, Director of the Stem Cell Epigenetics Programme at the Department of Experimental Oncology at IEO, in collaboration with Gioacchino Natoli, Director of the Transcriptional Control in Inflammation and Cancer Laboratory at the same Institute, identified Jumonjd3 as an enzyme that controls neuronal differentiation of stem cells by removing silencing signals from genes that are essential for neurogenesis.

In embryonic stem cells, a group of genes, defined as ‘bivalent´, are characterized by their association with Histone H3, methylated on two residues, lysine 4 and lysine 27. Paradoxically, methylation of these two residues has opposing effects on gene expression. During the differentiation of the neuronal lineage, these genes lose their bivalent character by demethylation of one of the two lysine residues. This leads to either the complete activation or complete silencing of particular genes that grant stem cells a new neuronal identity.

The enzyme responsible for the demethylation of lysine 27 during neuronal differentiation has been identified by Giuseppe Testa and colleagues as Jumonjd3 (Jumonji in Japanese means cross-shaped).

“Our characterization of the role of Jumonjd3 in neuronal differentiation supports the notion that epigenetic modifications, which regulate cell fate and identity, represent a dynamic and plastic mechanism for controlling gene expression.” explained Testa “It is plausible that Jumonjd3 will one day represent an important target in the exploitation of cellular programming and reprogramming for therapeutic purposes”.

This research is a significant step forward in our understanding of the intricate mechanisms that regulate stem cell functions. In the long term, Jumonjd3 could constitute a promising target in the reprogramming of differentiated cells and in the development of antineoplastic therapies that counteract the abnormal differentiation processes at the route of tumourigenesis.

Giuseppe Testa and his research group have performed in vitro and in vivo experiments on cells from model organisms using innovative experimental methods based on chromatin immunoprecipitation (a technique that “immortalizes” the interactions between specific proteins and regions of the genome in a particular instance in the cell’s life).

Elena Bauer | alfa
Further information:
http://www.ifom-ieo-campus.it
http://www.ifom-ieo-campus.it/press/release_Jumonjd3_081014.php

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>