Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin scientists advance understanding of human brown adipose tissue and grow new cells

23.04.2013
Findings open new possibilities for research and testing treatments to combat obesity

Joslin scientists report significant findings about the location, genetic expression and function of human brown adipose tissue (BAT) and the generation of new BAT cells. These findings, which appear in the April 2013 issue of Nature Medicine, may contribute to further study of BAT's role in human metabolism and developing treatments that use BAT to promote weight loss.

Two types of adipose (fat) tissue ¨C brown and white -- are found in mammals. Unlike the more predominant white adipose tissue (WAT) which stores fat, BAT burns fat to produce heat when the body is exposed to cold and also plays a role in energy metabolism. Human studies have shown that greater quantities of BAT are associated with lower body weight. BAT has been a major focus of study among scientists and pharmaceutical companies based on its potential as a treatment to combat obesity, a major risk factor for type 2 diabetes.

Studies in mice have identified two types of BAT: constitutive or "classical" BAT which is present at birth and persists throughout life and recruitable or "beige" BAT which can be produced from within white fat in response to metabolic conditions. These two types of BAT may also be present in humans.

Previous studies have identified the human neck as a primary location for BAT deposits. To determine the precise locations of these deposits, Joslin scientists obtained fat samples from five neck regions of patients undergoing neck surgery. Analysis of the samples showed that BAT was most abundant in deep regions of the neck, near the carotid sheath and longus colli muscles. These samples expressed the BAT marker gene, uncoupling protein 1 (UCP1), which is involved in heat generation. "BAT is most abundant in the deep locations of the neck, close to the sympathetic chain and the carotid arteries, where it likely helps to warm blood and raise body temperature. Now that we know where brown fat is, we can easily collect more cells for further study," says Aaron M. Cypess, M.D., Ph.D., senior author and Assistant Investigator in the Section of Integrative Physiology and Metabolism and Assistant Professor at Harvard Medical School.

In analyzing genetic expression in superficial and deep human neck fat tissue, the fat from deep locations was found to most closely resemble cells from constitutive mouse BAT, the kind already known to consume large quantities of glucose and fat.

The Joslin scientists compared the oxygen consumption rate (OCR), which demonstrates the capacity to burn calories, of human BAT cells to mouse constitutive BAT cells and human WAT. This is the first study to directly measure brown fat cells' OCR at baseline. The OCR of the human BAT cells from the deep location next to the longus colli was nearly 50 percent of the mouse BAT cells; in contrast, the OCR of human WAT was only one-hundredth of the OCR found in the most active human BAT from the longus colli depot. "We show that at baseline, brown fat cells have a great capacity to burn fat," says Dr. Cypess.

The scientists were able to grow new functional brown fat cells (adipocytes) by differentiating precursor cells (preadipocytes) derived from both superficial and deep human neck fat tissue. When stimulated, the cells expressed the same genes as naturally occurring brown fat cells. This is the first report of the production of brown fat cells (adipogenesis) that can respond to pharmacological stimulation.

The Joslin scientists are following up on this study to learn more about the functions of BAT, including how it affects energy balance and uses glucose. Having the ability to produce brown fat cells outside the body will make it possible to develop drugs and other potential treatments that increase BAT activity to combat obesity. "Our research has significant practical applications. If we stimulate the growth of brown fat in people, it may burn their white fat and help them lose weight, which lessens insulin resistance and improves diabetes," says Dr. Cypess.

This study was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, Harvard University and its affiliated academic health care centers, the Harvard Stem Cell Institute, and Eli Lilly Foundation.

About Joslin Diabetes Center

Joslin Diabetes Center, located in Boston, Massachusetts, is the world's largest diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Joslin is an independent, nonprofit institution affiliated with Harvard Medical School.

Our mission is to prevent, treat and cure diabetes. Our vision is a world free of diabetes and its complications. For more information, visit http://www.joslin.org.

About Joslin Research

Joslin Research comprises the most comprehensive and productive effort in diabetes research under one roof anywhere in the world. With 30©plus faculty©level investigators and an annual research budget of $36 million, Joslin researchers focus on unraveling the biological, biochemical and genetic processes that underlie the development of type 1 and type 2 diabetes and related complications.

Joslin research is highly innovative and imaginative, employing the newest tools in genetics, genomics and proteomics to identify abnormalities that may play a role in the development of diabetes and its complications. Joslin Clinic patients, and others with diabetes, have the option of participating in clinical trials at Joslin to help translate basic research into treatment innovations.

Joslin has one of the largest diabetes training programs in the world, educating 150 M.D. and Ph.D. researchers each year, many of whom go on to head diabetes initiatives at leading institutions all over the globe. For more information, visit http://www.joslinresearch.org.

Jeffrey Bright | EurekAlert!
Further information:
http://www.joslinresearch.org

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>