Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin identifies immune cells that promote growth of beta cells in type 1 diabetes

30.09.2013
Provides new insights into type 1 diabetes pathology

Joslin researchers have identified immune cells that promote growth of beta cells in type 1 diabetes. This study provides further evidence of a changed role for immune cells in type 1 diabetes pathology. The study will be published online today and will appear in the January issue of Diabetes.

"In type 1 diabetes, the immune system infiltrates pancreatic islets and destroys insulin-producing beta cells. While infiltrating immune cells are traditionally considered to negatively impact beta cells, recent studies in non-obese diabetic (NOD) mice have suggested that immune cells can also contribute to preserving beta cells," says lead author Ercument Dirice, Ph.D., research fellow in the Kulkarni Lab in the Section on Islet Cell and Regenerative Biology at Joslin Diabetes Center .

This finding is strengthened by the observation by Joslin researchers who reported that members of the Center’s 50-Year Medalist Study, who have lived with type 1 diabetes for 50 years or more, retain some beta cells and produce insulin.

"The traditional view of type 1 diabetes was that immune cells killed all beta cells and people with the disease would have to take insulin for life. But we know that some beta cells do survive and secrete insulin even when the patients have had type 1 diabetes for 50 years," says senior author Rohit N. Kulkarni, M.D., Ph.D., Associate Professor of Medicine at Harvard Medical School and the principle investigator of the project at Joslin. In this study,

Joslin researchers were interested in learning exactly how immune cells could promote beta cell growth and identifying the type of cell and the mechanisms underlying this effect.

In a series of experiments, the researchers injected NOD mice with immune cells from the pancreatic islets of donor NOD mice and assessed their effects on beta cells. The immune cells tested included subtypes of B or T immune cells.

Dirice, the lead author of the study, found that it is T cells not B cells that are associated with beta cell proliferation. Mice that received B cells showed no difference in beta cell growth. Mice that received the T cell subtypes CD4+ and CD8+ showed an elevation in all markers of beta cell proliferation compared to mice that did not receive them. The researchers also found that beta cell growth happens after islets are infiltrated by immune cells and is independent of the effects of glucose and insulin.

Further experiments with cell cultures showed that CD4+ and CD8+ cells secrete inflammatory cytokines and chemokines (Interleukin 2, Interleukin 6, Interleukin 10, MIP-1á and RANTES), which together enhanced beta cell proliferation. This is the first study to report that this group of "soluble factors" is involved in promoting beta cell growth.

"This gives us new insights into what is happening in the pathology of type 1 diabetes. The immune cells we identified send signals which appear to protect and promote growth of beta cells. This opens up an exciting new area that scientists have thought about; now we have the hard data to substantiate it," says Dr. Kulkarni.

The next step is to investigate the effects of immune cells on human beta cell growth. The factors secreted from CD4+ and CD8+ cells are potential therapeutic candidates to enhance beta cell growth to prevent or delay the onset of type 1 diabetes.

"We need to learn more about the relationship of beta cell death and proliferation to determine if we can harness these soluble substances to encourage beta cell proliferation rather than destruction," says Dr. Kulkarni.

This study was funded by the Juvenile Diabetes Research Foundation, National Institutes of Health and the Turkish Diabetes, Obesity and Nutrition Association.

About Joslin Diabetes Center

Joslin Diabetes Center, based in Boston, Massachusetts, undertakes diabetes research, clinical care, education and health and wellness programs on a global scale. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real progress in preventing and curing diabetes . Joslin is an independent, nonprofit institution affiliated with Harvard Medical School, and is recognized worldwide for driving innovative solutions in diabetes prevention, research, education, and care.

Our mission is to prevent, treat and cure diabetes. Our vision is a world free of diabetes and its complications. For more information, visit www.joslin.org

About Joslin Research

Joslin Research comprises the most comprehensive and productive effort in diabetes research under one roof anywhere in the world. With 30-plus faculty-level investigators, Joslin researchers focus on unraveling the biological, biochemical and genetic processes that underlie the development of type 1 and type 2 diabetes and related complications.

Joslin research is highly innovative and imaginative, employing the newest tools in genetics, genomics and proteomics to identify abnormalities that may play a role in the development of diabetes and its complications. Joslin Clinic patients, and others with diabetes, have the option of participating in clinical trials at Joslin to help translate basic research into treatment innovations. Joslin has one of the largest diabetes training programs in the world, educating 150 M.D. and Ph.D. researchers each year, many of whom go on to head diabetes initiatives at leading institutions all over the globe. For more information, visit www.joslinresearch.org.

Jeffrey Bright | EurekAlert!
Further information:
http://www.joslinresearch.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms

05.12.2016 | Life Sciences

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>