Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin identifies immune cells that promote growth of beta cells in type 1 diabetes

30.09.2013
Provides new insights into type 1 diabetes pathology

Joslin researchers have identified immune cells that promote growth of beta cells in type 1 diabetes. This study provides further evidence of a changed role for immune cells in type 1 diabetes pathology. The study will be published online today and will appear in the January issue of Diabetes.

"In type 1 diabetes, the immune system infiltrates pancreatic islets and destroys insulin-producing beta cells. While infiltrating immune cells are traditionally considered to negatively impact beta cells, recent studies in non-obese diabetic (NOD) mice have suggested that immune cells can also contribute to preserving beta cells," says lead author Ercument Dirice, Ph.D., research fellow in the Kulkarni Lab in the Section on Islet Cell and Regenerative Biology at Joslin Diabetes Center .

This finding is strengthened by the observation by Joslin researchers who reported that members of the Center’s 50-Year Medalist Study, who have lived with type 1 diabetes for 50 years or more, retain some beta cells and produce insulin.

"The traditional view of type 1 diabetes was that immune cells killed all beta cells and people with the disease would have to take insulin for life. But we know that some beta cells do survive and secrete insulin even when the patients have had type 1 diabetes for 50 years," says senior author Rohit N. Kulkarni, M.D., Ph.D., Associate Professor of Medicine at Harvard Medical School and the principle investigator of the project at Joslin. In this study,

Joslin researchers were interested in learning exactly how immune cells could promote beta cell growth and identifying the type of cell and the mechanisms underlying this effect.

In a series of experiments, the researchers injected NOD mice with immune cells from the pancreatic islets of donor NOD mice and assessed their effects on beta cells. The immune cells tested included subtypes of B or T immune cells.

Dirice, the lead author of the study, found that it is T cells not B cells that are associated with beta cell proliferation. Mice that received B cells showed no difference in beta cell growth. Mice that received the T cell subtypes CD4+ and CD8+ showed an elevation in all markers of beta cell proliferation compared to mice that did not receive them. The researchers also found that beta cell growth happens after islets are infiltrated by immune cells and is independent of the effects of glucose and insulin.

Further experiments with cell cultures showed that CD4+ and CD8+ cells secrete inflammatory cytokines and chemokines (Interleukin 2, Interleukin 6, Interleukin 10, MIP-1á and RANTES), which together enhanced beta cell proliferation. This is the first study to report that this group of "soluble factors" is involved in promoting beta cell growth.

"This gives us new insights into what is happening in the pathology of type 1 diabetes. The immune cells we identified send signals which appear to protect and promote growth of beta cells. This opens up an exciting new area that scientists have thought about; now we have the hard data to substantiate it," says Dr. Kulkarni.

The next step is to investigate the effects of immune cells on human beta cell growth. The factors secreted from CD4+ and CD8+ cells are potential therapeutic candidates to enhance beta cell growth to prevent or delay the onset of type 1 diabetes.

"We need to learn more about the relationship of beta cell death and proliferation to determine if we can harness these soluble substances to encourage beta cell proliferation rather than destruction," says Dr. Kulkarni.

This study was funded by the Juvenile Diabetes Research Foundation, National Institutes of Health and the Turkish Diabetes, Obesity and Nutrition Association.

About Joslin Diabetes Center

Joslin Diabetes Center, based in Boston, Massachusetts, undertakes diabetes research, clinical care, education and health and wellness programs on a global scale. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real progress in preventing and curing diabetes . Joslin is an independent, nonprofit institution affiliated with Harvard Medical School, and is recognized worldwide for driving innovative solutions in diabetes prevention, research, education, and care.

Our mission is to prevent, treat and cure diabetes. Our vision is a world free of diabetes and its complications. For more information, visit www.joslin.org

About Joslin Research

Joslin Research comprises the most comprehensive and productive effort in diabetes research under one roof anywhere in the world. With 30-plus faculty-level investigators, Joslin researchers focus on unraveling the biological, biochemical and genetic processes that underlie the development of type 1 and type 2 diabetes and related complications.

Joslin research is highly innovative and imaginative, employing the newest tools in genetics, genomics and proteomics to identify abnormalities that may play a role in the development of diabetes and its complications. Joslin Clinic patients, and others with diabetes, have the option of participating in clinical trials at Joslin to help translate basic research into treatment innovations. Joslin has one of the largest diabetes training programs in the world, educating 150 M.D. and Ph.D. researchers each year, many of whom go on to head diabetes initiatives at leading institutions all over the globe. For more information, visit www.joslinresearch.org.

Jeffrey Bright | EurekAlert!
Further information:
http://www.joslinresearch.org

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>