Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Joint research into an enzyme that causes genetic diseases

Researchers from CIC bioGUNE's Structural Biology Unit and Columbia University (New York) have conducted a joint research project, published in the prestigious scientific journal Structure, to gain in-depth knowledge of the structure of pyruvate carboxylase when it is in solution (in the "natural" state).

Pyruvate carboxylase is a metabolic enzyme that plays a fundamental role in the metabolism of fatty acids (the components of fats) and sugars. When its function is not adequately performed (for example, when mutations in the gene arise) diverse metabolic diseases of genetic origin are triggered, amongst them lactic acidaemia, hypoglycaemia, and psycho-motor retardation. At the same time, being at a metabolic crossroads, pyruvate carboxylase is potentially a target in obesity and diabetes treatments.

The paper presents the enzyme's structure under physiological conditions for the first time, and reveals which of the previous models is the correct one.

Mikel Valle, a researcher from CIC bioGUNE's Structural Biology Unit explains that This is the start of a highly ambitious study which is being carried out at CIC bioGUNE and which aims to discover the functioning of pyruvate carboxylase. This they shall achieve by observing its structure throughout its functional cycle, in the hope of discovering its structure in each of the steps it follows during its functioning.

The project has been conducted together with the New York Structural Biology Center (NYSBC). Set up in 2002, this Center uses the most advanced Molecular Magnetic Resonance imaging, Electron Microscopy, and X-ray crystallography equipment (as does CIC bioGUNE's Structural Biology Unit). In this joint research project, the NYSBC took charge of the X-ray crystallography part, while CIC bioGUNE's Structural Biology Unit has undertaken the Electron Microscopy part.

Oihane Lakar | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Taming chaos: Calculating probability in complex systems

21.03.2018 | Physics and Astronomy

Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

21.03.2018 | Physics and Astronomy

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>