Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joining forces to unveil cell division

02.04.2010
A European team led by scientists in Vienna presents a database for cell cycle control

The EU-funded project MitoCheck, which started in 2004, has now been successfully rounded off. Eleven European research teams and companies, coordinated by the Research Institute of Molecular Pathology (IMP) in Vienna, studied the genetic basis of cell division. The findings are published today in the scientific journals Science and Nature.

How does one cell become two, two cells become four, and finally develop into an entire organism? This question has puzzled biologists for the past 150 years, ever since they knew that living beings are made up of cells produced by repeated divisions, all originating from one fertilized egg. How exactly this process is controlled has remained a mystery. Researchers led by Jan-Michael Peters at the IMP have now come much closer to solving the puzzle.

Although it has long been possible to watch dividing cells under a microscope, scientists did not know exactly which genes are involved in the process and how. They knew even less about the role of the proteins encoded by these genes. To fill the gaps, eleven European research teams and companies joined forces to reveal the molecular basis of human cell division. The project "MitoCheck" was coordinated by the IMP and received 8.6 Million Euros of funding from the European Commission. The results of the combined effort have now been published.

In order to find out which genes are involved in cell division, the group of Jan Ellenberg at EMBL (European Molecular Biology Laboratory, Heidelberg) had to systematically inactivate each and every human gene - in total 22 000 - in cultured cells. Using video microscopy, the scientists then made movies of the cells to find out whether and how these gene inactivations affected cell division. As a next step, the group of Jan-Michael Peters then analyzed how the proteins encoded by these genes assembled to form molecular machines that control the different steps of cell division.

The result of this international teamwork is the first catalogue of all human genes required for cell division. The researchers have also come up with the blueprint for many of the molecular machines which carry out the instructions laid down in the genes. All data are now made available for public use by means of a database of the human genome (http://www.mitocheck.org). At the same time, the MitoCheck-team has published the most relevant results in the two journals Science and Nature. 1) 2)

"Our database is going to be an important source of information for many areas of biomedical research. It is also a good example of how the complex and ambitious issues in science can only be addressed in a joint international effort", says project coordinator Jan-Michael Peters. MitoCheck represents not only a milestone for understanding cell division, but will prove very useful for other disciplines in the life sciences. The work of MitoCheck has spurred the development of many new techniques, such as automated video microscopy.

In the long run, scientists want to fully understand how cell division works and to use this knowledge for the development of causal therapies for cancer. This ambitious goal will require a lot more basic research in the near future. A first step has already been made: the European Union is going to fund a follow-up project over the next five years. "MitoSys", as it is called, will also be coordinated by the IMP and will start later this year.

1) The paper "Systematic Characterization of Human Protein Complexes Identifies Chromosome Segregation Proteins" by the IMP team (Hutchins et al.) will be published online in Science on April 1st, 2010.

2) The paper "Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes" by the EMBL team (Neumann et al.) will be published in Nature on April 1st, 2010.

Contact:
Mag. Evelyn Missbach, MAS
IMP-IMBA Communications
Tel: +43 1 79730 3626
evelyn.missbach@imba.oeaw.ac.at
Dr. Yan Sun
Project-Coordinator
Tel: +43 1 79730 3254
Yan.sun@imp.ac.at
Scientific Contact:
Dr. Jan-Michael Peters
Jan-Michael.Peters@imp.ac.at

Evelyn Missbach | idw
Further information:
http://www.mitocheck.org
http://www.imp.ac.at/pressefoto-mitocheck

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>