Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joining forces to unveil cell division

02.04.2010
A European team led by scientists in Vienna presents a database for cell cycle control

The EU-funded project MitoCheck, which started in 2004, has now been successfully rounded off. Eleven European research teams and companies, coordinated by the Research Institute of Molecular Pathology (IMP) in Vienna, studied the genetic basis of cell division. The findings are published today in the scientific journals Science and Nature.

How does one cell become two, two cells become four, and finally develop into an entire organism? This question has puzzled biologists for the past 150 years, ever since they knew that living beings are made up of cells produced by repeated divisions, all originating from one fertilized egg. How exactly this process is controlled has remained a mystery. Researchers led by Jan-Michael Peters at the IMP have now come much closer to solving the puzzle.

Although it has long been possible to watch dividing cells under a microscope, scientists did not know exactly which genes are involved in the process and how. They knew even less about the role of the proteins encoded by these genes. To fill the gaps, eleven European research teams and companies joined forces to reveal the molecular basis of human cell division. The project "MitoCheck" was coordinated by the IMP and received 8.6 Million Euros of funding from the European Commission. The results of the combined effort have now been published.

In order to find out which genes are involved in cell division, the group of Jan Ellenberg at EMBL (European Molecular Biology Laboratory, Heidelberg) had to systematically inactivate each and every human gene - in total 22 000 - in cultured cells. Using video microscopy, the scientists then made movies of the cells to find out whether and how these gene inactivations affected cell division. As a next step, the group of Jan-Michael Peters then analyzed how the proteins encoded by these genes assembled to form molecular machines that control the different steps of cell division.

The result of this international teamwork is the first catalogue of all human genes required for cell division. The researchers have also come up with the blueprint for many of the molecular machines which carry out the instructions laid down in the genes. All data are now made available for public use by means of a database of the human genome (http://www.mitocheck.org). At the same time, the MitoCheck-team has published the most relevant results in the two journals Science and Nature. 1) 2)

"Our database is going to be an important source of information for many areas of biomedical research. It is also a good example of how the complex and ambitious issues in science can only be addressed in a joint international effort", says project coordinator Jan-Michael Peters. MitoCheck represents not only a milestone for understanding cell division, but will prove very useful for other disciplines in the life sciences. The work of MitoCheck has spurred the development of many new techniques, such as automated video microscopy.

In the long run, scientists want to fully understand how cell division works and to use this knowledge for the development of causal therapies for cancer. This ambitious goal will require a lot more basic research in the near future. A first step has already been made: the European Union is going to fund a follow-up project over the next five years. "MitoSys", as it is called, will also be coordinated by the IMP and will start later this year.

1) The paper "Systematic Characterization of Human Protein Complexes Identifies Chromosome Segregation Proteins" by the IMP team (Hutchins et al.) will be published online in Science on April 1st, 2010.

2) The paper "Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes" by the EMBL team (Neumann et al.) will be published in Nature on April 1st, 2010.

Contact:
Mag. Evelyn Missbach, MAS
IMP-IMBA Communications
Tel: +43 1 79730 3626
evelyn.missbach@imba.oeaw.ac.at
Dr. Yan Sun
Project-Coordinator
Tel: +43 1 79730 3254
Yan.sun@imp.ac.at
Scientific Contact:
Dr. Jan-Michael Peters
Jan-Michael.Peters@imp.ac.at

Evelyn Missbach | idw
Further information:
http://www.mitocheck.org
http://www.imp.ac.at/pressefoto-mitocheck

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>