Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins team identifies genetic link to attempted suicide

29.03.2011
Findings could lead to new avenues of treatment research

A study of thousands of people with bipolar disorder suggests that genetic risk factors may influence the decision to attempt suicide.

Johns Hopkins scientists, reporting in the journal Molecular Psychiatry, have identified a small region on chromosome 2 that is associated with increased risk for attempted suicide. This small region contains four genes, including the ACP1 gene, and the researchers found more than normal levels of the ACP1 protein in the brains of people who had committed suicide. This protein is thought to influence the same biological pathway as lithium, a medication known to reduce the rate of suicidal behavior.

The researchers say the findings could lead to better suicide prevention efforts by providing new directions for research and drug development.

"We have long believed that genes play a role in what makes the difference between thinking about suicide and actually doing it," says study leader Virginia L. Willour, Ph.D., an assistant professor of psychiatry and behavioral sciences at the Johns Hopkins University School of Medicine.

Willour and her colleagues studied DNA samples from nearly 2,700 adults with bipolar disorder, 1,201 of them with a history of suicide attempts and 1,497 without. They found that those with one copy of a genetic variant in the region of chromosome 2 where ACP1 is located were 1.4 times more likely to have attempted suicide, and those with two copies were almost three times as likely.

Willour and her colleagues were able to replicate their findings in another group of samples: This one comprised DNA from more than 3,000 people with bipolar disorder. By using only DNA from people with bipolar disorder, the researchers say they were able to control for mental illness and narrow in on what may cause one group to attempt suicide and another to control those urges.

Suicide is estimated to kill 1.4 percent of the U.S. population, and roughly 4.6 percent of the population has attempted suicide at least once, Willour says. Among people with bipolar disorder, 47 percent think about killing themselves while 25 percent actually try to do it, she says.

Willour says the next steps are to replicate these findings and to determine the exact biological mechanisms through which these genetic risk factors increase the risk for suicidal behavior.

"What's promising are the implications of this work for learning more about the biology of suicide and the medications used to treat patients who may be at risk," Willour says. "Not everyone with bipolar disorder can take lithium because of its side effects. If we could give them another option, that would be fantastic."

The study was funded by grants from the National Institute of Mental Health and the American Foundation for Suicide Prevention.

Other Hopkins researchers who participated in the study are Fayaz Seifuddin, M.S.; Pamela B. Mahon, Ph.D.; Dubravka Jancic, Ph.D.; Mehdi Pirooznia, M.D., Ph.D.; Barbara Schweizer, R.N., B.S.; Fernando S. Goes, M.D.; Francis Mondimore, M.D.; Dean F. MacKinnon, M.D.; J. Raymond DePaulo Jr., M.D.; Peter P. Zandi, Ph.D.; and James B. Potash, M.D., M.P.H.

For more information: http://www.hopkinsmedicine.org/psychiatry/specialty_areas/moods/expert_team/willour.html

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>