Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins scientists expose cancer cells' universal 'dark matter'

27.06.2011
Findings reveal chaos in biochemical alterations of cancer cells

Using the latest gene sequencing tools to examine so-called epigenetic influences on the DNA makeup of colon cancer, a Johns Hopkins team says its results suggest cancer treatment might eventually be more tolerable and successful if therapies could focus on helping cancer cells get back to normal in addition to strategies for killing them.

In a report published June 26 in Nature Genetics, the investigators focused on a particular epigenetic biochemical signature known as methylation, which silences genes. Although not part of a gene's central DNA sequence, it is copied when a cell divides, perpetuating its activity.

By comparing the epigenomes of eight human tissue samples -- three from noncancerous colon tissue, three from colon tumors and two from polyps (early-stage colon cancer) -- the team found that in all the colon tumors the defining characteristic was a universally "chaotic" pattern of methylation. In noncancerous tissue, they found methylation occurring in well-defined places, either as small "islands" of methylation or huge methylated "blocks" that collectively encompassed at least a third of the genome.

"In the cancer tissue we saw that the once-precise boundaries of the islands had shifted or disappeared altogether, and the start and end points of the sites appeared unregulated," says Andrew Feinberg, M.D., M.P.H., professor of molecular medicine and director of the Center for Epigenetics at the Johns Hopkins University School of Medicine's Institute for Basic Biomedical Sciences. "We also saw a loss of methylation, presumably increasing the randomness of gene function within them."

"What seems to define cancer at the epigenetic level may be simple and common, namely chaos that seems to be universal," he adds.

The researchers noted that cells in their normal colon tissue samples stayed methylated at around the 80 percent level for large (and previously unexamined) blocks of the epigenome. By comparison, cells from colon tumors comprising those same huge blocks had no such stability and were much more variable in terms of methylation levels.

Feinberg says the findings could mean that current efforts to simply identify methylation markers as signals of cancer or targets of cancer therapy may be misleading or worse, won't do the job at all. An alternative would be a new method that detects epigenetic chaos universally in any cancer epigenome.

The team designed a custom test to compare about 20 noncancerous tissue samples to 20 samples from each of a variety of tumors as they investigated thousands of methylation sites for colon, breast, lung, kidney and thyroid cancers. They found that, here again, methylation was well-regulated in the normal tissues, almost always occurring within a limited range of variability. However, in the very same specific places of the epigenome characterized by chaos in colon cancer cells, all the other cancerous tissues examined by the team showed distinctly variable and "chaotic" levels of methylation variation.

"Maybe the big lesson learned from our observation of this universal chaos is that we may need to think not so much about just killing cancer cells, but also about ways of helping cancer cells figure out how to be what they're supposed to be, and re-educate them so they can stay truer to their normal identities," Feinberg says.

From the cancer cells' "perspective," Feinberg says, the chaos is helpful, endowing tumors with the ability to turn genes on and off in an uncontrolled way, and making cancer cells adaptable enough to live in all different kinds of environments, spread and thrive in foreign tissue.

"The regions of epigenetic chaos where methylation appears wildly variable in at least five different common cancers are -- not so coincidentally -- the very same as those that during normal development are important in controlling cell differentiation, or what particular cells are supposed to be, like normal colon cells," Feinberg says.

"The same epigenetic malleability that permits human cells with the same DNA to become different tissue types during development also confers vulnerability," adds Rafael Irizarry, Ph.D., a professor of biostatistics in the Johns Hopkins University Bloomberg School of Public Health, who with Feinberg, led this study. "The epigenome has these regions where change is easy in order for some cells to become kidney and others, brain and spleen, for example, but that very vulnerability to change may ultimately lead to cancer. Targeting those regions might help the cells become more normal."

Because the new study also identifies regions of the genome that appear to control this epigenetic chaos, Feinberg and his team say it may prove potentially fruitful in revealing new targets for cancer therapy or prevention.

This study was supported by the National Institutes of Health.

In addition to Feinberg and Irizarry, other authors from Johns Hopkins are Kasper Daniel Hansen, Winston Timp, Hector Corrada Bravo, Sarven Sabunciyan, Benjamin Langmead, Oliver G. McDonald, Bo Wen, Yun Liu and Eirikur Briem. Additional authors are Hao Wu of Emory University, and Dinh Diep and Kun Zhang of the University of California, San Diego.

On the Web:

http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/
research/research_centers/epigenetics/index.html
http://epigenetics.jhu.edu/
http://epigenetics.jhu.edu/?section=personnelPages&personID=2
http://rafalab.jhsph.edu/
http://www.nature.com/ng/index.html
Media Contacts: Maryalice Yakutchik; 443-287-2251; myakutc1@jhmi.edu
Audrey Huang; 410-614-5105; audrey@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>