Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Johns Hopkins researchers develop safer way to make induced pluripotent stem cells

Researchers at Johns Hopkins have found a better way to create induced pluripotent stem (iPS) cells—adult cells reprogrammed with the properties of embryonic stem cells—from a small blood sample. This new method, described last week in Cell Research, avoids creating DNA changes that could lead to tumor formation.

“These iPS cells are much safer than ones made with previous technologies because they don’t involve integrating foreign viruses that can potentially lead to uncontrolled, cancerous cell growth,” says Linzhao Cheng, Ph.D., an associate professor of medicine in the Division of Hematology and a member of the Johns Hopkins Institute of Cell Engineering. “This is important if iPS cells are to be used as therapies one day.”

Cheng says the higher-quality iPS cells will also be more reliable in research studies, “since we don’t have to worry about extra genetic changes associated with previous technologies interfering with study results.”

Johns Hopkins researchers created the safer iPS cells by transferring a circular piece of DNA into blood cells from anonymous donors to deliver the needed genetic components. The traditional way is to use viruses to carry DNA into a cell’s genome. Unlike the viral methods, the circular DNA the Hopkins team used is designed to stay separate from the host cell’s genome. After the iPS cells formed, the circular DNA delivered into the blood cells was gradually lost.

Using about a tablespoon of human adult blood or umbilical cord blood, the researchers grew the blood cells in the lab for eight to nine days. The researchers then transferred the circular DNA into the blood cells, where the introduced genes turned on to convert the blood cells to iPS cells within 14 days.

The research group verified conversion from mature blood cells to iPS cells by testing their ability to behave like stem cells and differentiate into other cell types, such as bone, muscle or neural cells. They also looked at the DNA from a dozen iPS cell lines to make sure there were no DNA rearrangements.

Cheng says the new method is also more efficient than the traditional use of skin cells to make iPS cells. “After a skin biopsy, it takes a full month to grow the skin cells before they are ready to be reprogrammed into iPS cells, unlike the blood cells that only need to grow for eight or nine days,” says Cheng. “The time it takes to reprogram the iPS cells from blood cells is also shortened to two weeks, compared to the month it takes when using skin cells.”

Cheng says “this easy method of generating integration-free human iPS cells from blood cells will accelerate their use in both research and future clinical applications.”

This study was funded by The Johns Hopkins University, a New York Stem Cell grant and grants from the National Institutes of Health.

Other authors on this manuscript are Bin-Kuan Chou, Pashant Mali, Xiaosong Huang, Zhaohui Ye, Sarah Dowey, Linda Resar and Chunlin Zou of the Johns Hopkins University School of Medicine; Y. Alex Zhang of the Cell Therapy Center at Xuanwu Hospital and Capital Medical University in Beijing, China; and Jay Tong of All-Cells LLC in Emeryville, California.

On the web:

The Cheng lab:

Institute for Cell Engineering:


Cell Research:

Media Contacts:
Vanessa McMains; 410-502-9410;
Audrey Huang; 410-614-5105;
Maryalice Yakutchik; 443-287-2251;

Vanessa McMains | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>