Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Jefferson researchers identify new mechanism of blocking HIV-1 from entering cells

Publishing in PLoS Pathogens, researchers at from the Kimmel Cancer Center at Jefferson have found a novel mechanism by which drugs block HIV-1 from entering host cells.

Cellular invasion by HIV-1 requires the concerted action of two proteins on the viral surface: gp120 and gp41. The function of gp41 is to get the viral contents into the interior of the host cells. This requires the association of two distinct regions of gp41 called N-HR and C-HR.

Anti-HIV-1 agents known as fusion inhibitors target the N-HR or C-HR and disrupt their association, which prevents the virus from entering into the host cell. One drug that works like this is Fuzeon (Roche), and there are other agents in the pipeline.

But blocking the N-HR/C-HR association is not only mechanism by which fusion inhibitors prevent HIV-1 entry, according to Michael Root, M.D., Ph.D., assistant professor of Biochemistry and Molecular Biology at Jefferson Medical College of Thomas Jefferson University. The inhibitors also induce irreversible deactivation of gp41.

"After these drugs bind, they seem to shuttle gp41 into a dead conformation from which the protein cannot recover," Dr. Root said. "Importantly, the speed of this drug-induced deactivation greatly influences how potent a drug is at preventing HIV-1 infection."

When the inhibitors bind to the gp41 C-HR, the protein rapidly deactivates before inhibitors have time to dissociate. But when the inhibitors bind to the gp41 N-HR, deactivation takes a very long time, and many inhibitors can readily unbind. To potently inhibit HIV-1 entry, a C-HR targeting fusion inhibitor can have a relatively low affinity, but an N-HR targeting fusion inhibitor must bind extremely tightly.

A major drawback to using Fuzeon and related drugs that target N-HR is the rapid emergence of HIV-1 strains resistant to the drugs. Dr. Root's study suggests that the resistance phenomenon is related to the slow speed of gp41 deactivation induced by these fusion inhibitors. HIV-1 appears to have more difficulty developing resistance to drugs that can remain bound to gp41 for much longer than gp41 takes to deactivate, even if the drugs are no more potent than Fuzeon against the original HIV-1 strain. Armed with this knowledge, Dr. Root and his team have developed a new strategy to improve the antiviral activities of N-HR-targeting fusion inhibitors.

These unexpected properties of HIV-1 fusion inhibitors are a consequence of the short time interval these drugs have to work. The N-HR and C-HR are only accessible to drug binding in a short-lived "intermediate state" that occurs right before N-HR/C-HR association.

Most pharmaceutical agents bind targets that exist for long times, but a growing class of drugs target similar, short-lived intermediate states. These drugs include local anesthetics, antibiotics and immunosuppressive agents used in clinical practice. The results of this study might also be extended to understand the activities and limitations of these drugs.

Emily Shafer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>