Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson researchers identify critical marker of response to gemcitabine in pancreatic cancer

08.06.2009
A protein related to aggressive cancers can actually improve the efficacy of gemcitabine at treating pancreatic cancer, according to a Priority Report in Cancer Research, published by researchers at Thomas Jefferson University.

The protein, called Hu antigen R (HuR), is a stress response protein found in the cytoplasm of pancreatic tumor cells. In certain experimental settings, pancreatic cancer cells that overexpressed HuR were up to 30-fold more sensitive to gemcitabine (Gemzar), according to Jonathan Brody, Ph.D., assistant professor of Surgery at Jefferson Medical College of Thomas Jefferson University.

In a clinical correlate study that included 32 resected pancreatic cancer patients who received gemcitabine, patients who had low cytoplasmic HuR levels had a 7-fold increased mortality risk compared to patients with high levels. This was after adjustment for other variables including age, sex, radiation therapy and other chemotherapy use.

"This marker appears to tell us upfront whether a patient will respond to treatment with gemcitabine, which is the routine treatment for pancreatic cancer," said Dr. Brody, who is the senior author of the study. "Of course, larger and comprehensive prospective studies need to be performed, but we now have a real clue about how to make this treatment better. Finding a mechanism that regulates gemcitabine's metabolism in pancreatic cancer cells is the real novel and exciting aspect of these findings."

Dr. Brody and colleagues found that in pancreatic cancer, HuR helps to regulate an enzyme called deoxycytidine kinase (dCK), which is responsible for metabolizing and activating gemcitabine. As with most chemotherapy drugs, gemcitabine causes cell stress and activates the HuR stress proteins. In turn, the high levels of HuR stimulate the production of more dCK, thus making gemcitabine more efficient, according to Dr. Brody.

"Normally, patients higher HuR cytoplasmic levels have a worse prognosis, since HuR expression is associated with advanced malignancies," Dr. Brody said. "However, in our study, they did better than patients with low HuR levels when they were treated with gemcitabine. We think it's because they already have high HuR levels at the time of treatment, which may be a response to the tumor cell environment."

According to Dr. Brody, research is underway to find a way to activate HuR in patients with a low expression. Other goals include expanding these findings to a larger pancreatic cancer population, and to other tumors that may be treated with gemcitabine, including breast, ovarian and certain lung cancers. They also want to determine if other chemotherapeutic agents engage this intriguing and manipulative pathway.

Co-authors of the paper include Charles J. Yeo, M.D., Samuel D. Gross Professor and chairman of the department of Surgery, and Agnieszka Witkiewicz, M.D., assistant professor of Pathology, Anatomy and Cell Biology. Drs. Brody, Yeo and Witkiewicz are co-directors of the Jefferson Pancreas, Biliary and Related Cancer Center.

Other study collaborators include Dr. Myriam Gorospe from the National Institute on Aging (NIH) and Dr. Judith Keen from the University of Medicine and Dentistry of New Jersey.

Emily Shafer | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>