Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the Jaws of Venus Flytrap

03.09.2013
To trap and digest small animals – the Venus flytrap owes this faculty to its highly specialized leaves.

In order to obtain vital nitrogen from its prey, the plant uses a previously unknown mechanism, discovered by researchers from Würzburg, Freiburg and Göttingen.


The carnivorous Venus flytrap snaps shut with its plate-shaped trapping leaves. The mouth first becomes a "green stomach" and then an intestine.
Picture: Christian Wiese


In the cross-sectional view of the green stomach / intestine wall of the Venus flytrap you can see the glands (red), which secrete the acidic digestive enzyme cocktail and then absorb the nutrients made available.
Picture: Maria Escalante Perez

Nitrogen is a key nutrient for plants. They usually extract it from the soil in the form of nitrate or ammonium, which is transported to the roots and leaves to be used for the formation of proteins.

But what are plants to do if the soil provides little or no nitrogen? The carnivorous Venus flytrap (Dionaea muscipula), which is native to some swamplands of North America, has adapted to such nutrient-poor environments. It is able to survive there only because it has specialized in getting additional nutrients from animals.

How Dionaea catches its prey

Dionaea catches its prey with leaves that have evolved into snap-traps: If the insects touch special sensitive hairs on the surface of the trap, electrical impulses are triggered, causing the trap to snap shut in a flash.

Obviously, the trapped animals will try to escape. However, the more ferociously they fight, the more frequently they will touch the sensitive hairs. This in turn triggers a barrage of electrical impulses and initiates the production of the lipid hormone. The hormone activates numerous glands, which are densely packed on the inside of the trap: They flood the "green stomach" with an acidic fluid, containing more than 50 different digestive enzymes.

The digestive process is described in detail by the biophysicist Rainer Hedrich and his team in the journal "Current Biology". As described there, the trap of the plant integrates the functions of mouth, stomach and intestine into one single unit: "The glands that first secrete the enzyme-rich acidic digestive fluid take in the nutritious animal components later," Hedrich explains. "When the stomach is empty, the mouth opens in order to strike again at the next possible opportunity."

How the nitrogen is made available

The researchers analyzed the stomach contents of the Venus flytrap and found out that the body of the prey is broken down into its protein components, the amino acids. They noticed that the amino acid glutamine was missing and that the nitrogenous mineral nutrient ammonium was present instead. The reason: "The digestive fluid of the plant contains an enzyme, which breaks down the glutamine into glutamate and ammonium. The latter is then absorbed by the glands that have previously released the digestive fluid," says Hedrich.

The fact that plants are able to extract ammonium from animal proteins in this way was previously unknown. Apart from Hedrich's team, the research leading to this discovery involved Heinz Rennenberg of the University of Freiburg – an expert on nitrogen uptake and metabolism – and Erwin Neher. The Nobel laureate at the University of Göttingen is an expert on secretion processes.

What the lipid hormone brings about

In their experiments, the researchers discovered some additional facts: If a trap of the carnivorous plant has not caught and dissolved any insect prey, its "intestine" does not work: In this case, it cannot take in ammonium efficiently.

But this changes if the lipid hormone is previously applied to the trap. "The hormone has the effect that the gland cells are equipped with an ammonium transporter, which conveys the desired nitrogenous molecule into the plant," says Hedrich. The scientists also identified and named the gene responsible: DmAMT1 (Dionaea-muscipula-Ammonium-Transporter1).

What the researchers are going to do next

Besides nitrogen, all organisms need many more key nutrients and trace elements. How does the Venus flytrap extract sulfur and phosphorus from its prey? And in which form does it absorb these nutrient elements? How does the plant determine the current filling level of its stomach? Does it use the nourishment from the prey for the development of new trapping organs or for the production of new roots as well? And what happens when the root gets in contact with nutrients? These are the questions that the scientists are going to answer next.

In 2010, Rainer Hedrich was awarded a European research grant for this project, namely the ERC Advanced Grant, which is worth 2.5 million euro. The research topic is sensation, predatory behavior and prey digestion of Venus flytrap. Its genome is also to be decoded in order to determine the molecular principles of the carnivorous processes in plants.

Scherzer et al., The Dionaea muscipula Ammonium Channel DmAMT1 Provides NH4+ Uptake Associated with Venus Flytrap’s Prey Digestion, Current Biology (2013), http://dx.doi.org/10.1016/j.cub.2013.07.028

Contact person

Prof. Dr. Rainer Hedrich, Julius-von-Sachs-Institute for Biosciences at the University of Würzburg, T +49 (0)931 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>