Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the Jaws of Venus Flytrap

03.09.2013
To trap and digest small animals – the Venus flytrap owes this faculty to its highly specialized leaves.

In order to obtain vital nitrogen from its prey, the plant uses a previously unknown mechanism, discovered by researchers from Würzburg, Freiburg and Göttingen.


The carnivorous Venus flytrap snaps shut with its plate-shaped trapping leaves. The mouth first becomes a "green stomach" and then an intestine.
Picture: Christian Wiese


In the cross-sectional view of the green stomach / intestine wall of the Venus flytrap you can see the glands (red), which secrete the acidic digestive enzyme cocktail and then absorb the nutrients made available.
Picture: Maria Escalante Perez

Nitrogen is a key nutrient for plants. They usually extract it from the soil in the form of nitrate or ammonium, which is transported to the roots and leaves to be used for the formation of proteins.

But what are plants to do if the soil provides little or no nitrogen? The carnivorous Venus flytrap (Dionaea muscipula), which is native to some swamplands of North America, has adapted to such nutrient-poor environments. It is able to survive there only because it has specialized in getting additional nutrients from animals.

How Dionaea catches its prey

Dionaea catches its prey with leaves that have evolved into snap-traps: If the insects touch special sensitive hairs on the surface of the trap, electrical impulses are triggered, causing the trap to snap shut in a flash.

Obviously, the trapped animals will try to escape. However, the more ferociously they fight, the more frequently they will touch the sensitive hairs. This in turn triggers a barrage of electrical impulses and initiates the production of the lipid hormone. The hormone activates numerous glands, which are densely packed on the inside of the trap: They flood the "green stomach" with an acidic fluid, containing more than 50 different digestive enzymes.

The digestive process is described in detail by the biophysicist Rainer Hedrich and his team in the journal "Current Biology". As described there, the trap of the plant integrates the functions of mouth, stomach and intestine into one single unit: "The glands that first secrete the enzyme-rich acidic digestive fluid take in the nutritious animal components later," Hedrich explains. "When the stomach is empty, the mouth opens in order to strike again at the next possible opportunity."

How the nitrogen is made available

The researchers analyzed the stomach contents of the Venus flytrap and found out that the body of the prey is broken down into its protein components, the amino acids. They noticed that the amino acid glutamine was missing and that the nitrogenous mineral nutrient ammonium was present instead. The reason: "The digestive fluid of the plant contains an enzyme, which breaks down the glutamine into glutamate and ammonium. The latter is then absorbed by the glands that have previously released the digestive fluid," says Hedrich.

The fact that plants are able to extract ammonium from animal proteins in this way was previously unknown. Apart from Hedrich's team, the research leading to this discovery involved Heinz Rennenberg of the University of Freiburg – an expert on nitrogen uptake and metabolism – and Erwin Neher. The Nobel laureate at the University of Göttingen is an expert on secretion processes.

What the lipid hormone brings about

In their experiments, the researchers discovered some additional facts: If a trap of the carnivorous plant has not caught and dissolved any insect prey, its "intestine" does not work: In this case, it cannot take in ammonium efficiently.

But this changes if the lipid hormone is previously applied to the trap. "The hormone has the effect that the gland cells are equipped with an ammonium transporter, which conveys the desired nitrogenous molecule into the plant," says Hedrich. The scientists also identified and named the gene responsible: DmAMT1 (Dionaea-muscipula-Ammonium-Transporter1).

What the researchers are going to do next

Besides nitrogen, all organisms need many more key nutrients and trace elements. How does the Venus flytrap extract sulfur and phosphorus from its prey? And in which form does it absorb these nutrient elements? How does the plant determine the current filling level of its stomach? Does it use the nourishment from the prey for the development of new trapping organs or for the production of new roots as well? And what happens when the root gets in contact with nutrients? These are the questions that the scientists are going to answer next.

In 2010, Rainer Hedrich was awarded a European research grant for this project, namely the ERC Advanced Grant, which is worth 2.5 million euro. The research topic is sensation, predatory behavior and prey digestion of Venus flytrap. Its genome is also to be decoded in order to determine the molecular principles of the carnivorous processes in plants.

Scherzer et al., The Dionaea muscipula Ammonium Channel DmAMT1 Provides NH4+ Uptake Associated with Venus Flytrap’s Prey Digestion, Current Biology (2013), http://dx.doi.org/10.1016/j.cub.2013.07.028

Contact person

Prof. Dr. Rainer Hedrich, Julius-von-Sachs-Institute for Biosciences at the University of Würzburg, T +49 (0)931 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>