Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese scientists show 'new' liver generation using hepatocyte cell transplantation

12.06.2012
Researchers in Japan have found that hepatocytes, cells comprising the main tissue of the liver and involved in protein synthesis and storage, can assist in tissue engineering and create a "new liver system" in mouse models when donor mouse liver hepatocytes are isolated and propagated for transplantation.
Their study is published in a recent issue of Cell Transplantation (21:2/3), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/,

"In light of a serious shortage of donor livers that can be used for hepatocyte isolation, it has become important to establish an efficient way for hepatocytes to be retrieved and propagated for the purposes of tissue engineering," said study lead author Dr. Kazuo Ohashi of Tokyo's Institute of Advanced Biomedical Engineering and Science at Tokyo Women's medical Hospital.
"Our study demonstrated the feasibility of propagating mouse hepatocytes by creating a vascularized platform using a growth factor releasing device, and also by creating uniform hepatocyte "sheets" using the isolated individual donor hepatocytes in culture."

Using these approaches and implementing assessment eight weeks following hepatocyte transplantation, the researchers confirmed the functionality of the engineered liver system by documenting the production of liver-specific proteins, by analyzing chemical uptake in the mouse livers and observing subsequent metabolic activity, and by assessing regenerative growth.

The researchers note that the risk of cancer derived from transplanted hepatocytes needs to be addressed because of the "active level of proliferation" following transplantation. In their research, however, and in similar studies they reviewed, it appears that the "risk of cancer cell development is minimal," they concluded.

"The ability to regenerate and expand hepatocytes has potential clinical value when small amounts of tissue can be expanded to sufficient quantities prior to their use in hepatocyte transplantation or other hepatocyte-based therapies," said the researchers.
This study highlights some of the pioneering work stemming from the Japan Society for Organ Preservation and Medical Biology. The impact of this work on liver regeneration by cell transplantation ranks favorably with other studies and its usefulness will be revealed once all the necessary contributing factors for liver regeneration are understood.

Contact: Kazuo Ohashi, MD, PhD, Institute of Advanced Biomedical Engineering Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
Tel. +81-3-3353-8112 ext. 66220 954468004
Fax. +81-3-3359-6046 954461664
Email ohashi@abmes.twmu.ac.jp
Citation: Ohashi, K.; Tatsumi, K.; Tateno, C.; Kataoka, M.; Utoh, R.; Yoshizato, K.; Okano, T. Liver Tissue Engineering Utilizing Hepatocytes Propagated in Mouse Livers In Vivo. Cell Transplant. 21 (2/3):429-436; 2012.

The Coeditor-in-chief's for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at ricordi@miami.edu or Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or David Eve, PhD at celltransplantation@gmail.com

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>