Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese scientists show 'new' liver generation using hepatocyte cell transplantation

12.06.2012
Researchers in Japan have found that hepatocytes, cells comprising the main tissue of the liver and involved in protein synthesis and storage, can assist in tissue engineering and create a "new liver system" in mouse models when donor mouse liver hepatocytes are isolated and propagated for transplantation.
Their study is published in a recent issue of Cell Transplantation (21:2/3), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/,

"In light of a serious shortage of donor livers that can be used for hepatocyte isolation, it has become important to establish an efficient way for hepatocytes to be retrieved and propagated for the purposes of tissue engineering," said study lead author Dr. Kazuo Ohashi of Tokyo's Institute of Advanced Biomedical Engineering and Science at Tokyo Women's medical Hospital.
"Our study demonstrated the feasibility of propagating mouse hepatocytes by creating a vascularized platform using a growth factor releasing device, and also by creating uniform hepatocyte "sheets" using the isolated individual donor hepatocytes in culture."

Using these approaches and implementing assessment eight weeks following hepatocyte transplantation, the researchers confirmed the functionality of the engineered liver system by documenting the production of liver-specific proteins, by analyzing chemical uptake in the mouse livers and observing subsequent metabolic activity, and by assessing regenerative growth.

The researchers note that the risk of cancer derived from transplanted hepatocytes needs to be addressed because of the "active level of proliferation" following transplantation. In their research, however, and in similar studies they reviewed, it appears that the "risk of cancer cell development is minimal," they concluded.

"The ability to regenerate and expand hepatocytes has potential clinical value when small amounts of tissue can be expanded to sufficient quantities prior to their use in hepatocyte transplantation or other hepatocyte-based therapies," said the researchers.
This study highlights some of the pioneering work stemming from the Japan Society for Organ Preservation and Medical Biology. The impact of this work on liver regeneration by cell transplantation ranks favorably with other studies and its usefulness will be revealed once all the necessary contributing factors for liver regeneration are understood.

Contact: Kazuo Ohashi, MD, PhD, Institute of Advanced Biomedical Engineering Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
Tel. +81-3-3353-8112 ext. 66220 954468004
Fax. +81-3-3359-6046 954461664
Email ohashi@abmes.twmu.ac.jp
Citation: Ohashi, K.; Tatsumi, K.; Tateno, C.; Kataoka, M.; Utoh, R.; Yoshizato, K.; Okano, T. Liver Tissue Engineering Utilizing Hepatocytes Propagated in Mouse Livers In Vivo. Cell Transplant. 21 (2/3):429-436; 2012.

The Coeditor-in-chief's for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at ricordi@miami.edu or Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or David Eve, PhD at celltransplantation@gmail.com

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>