Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese genomes inform on gut inflammation culprits

08.03.2010
Revealing genes linked to the inflammatory bowel disease ulcerative colitis may speed the development of treatments

Ulcerative colitis is an inflammatory disease of the colon characterized by ulcers in that organ as well as by severe abdominal pain and chronic diarrhea during the active phase of the disease. Anti-inflammatory or immunosuppressive drugs are often used to treat ulcerative colitis, but in severe cases, the only known cure is surgical removal of the colon.

The cause of ulcerative colitis thus far remains a mystery. Studies aiming to determine genetic variations that are more frequently found in individuals with the disease are a first step in determining what may go wrong in the gut of affected individuals to cause the onset of ulcerative colitis. Developing drugs against the proteins that are encoded by these genes may represent future avenues for therapeutic discovery.

Now, as reported in the journal Nature Genetics, Japanese scientists have uncovered five discrete areas of the genome that are linked to ulcerative colitis in the Japanese population. The study was led by Michiaki Kubo from the RIKEN Center for Genomic Medicine in Yokohama, Japan.

Genome-wide hunt extends to Japan

The approach that the researchers took was called a ‘genome-wide association study’ (GWAS). Instead of searching for differences within only one gene of interest that may explain disease susceptibility, Kubo and colleagues looked for genetic variation across the entire genomes of the individuals in the study. This allows for an unbiased approach to gene discovery, which may uncover novel mechanisms by which the disease is initiated.

Previous GWAS studies, focused on individuals of European ancestry, have identified genes linked to ulcerative colitis. But because different ethnic groups may harbor different susceptibility genes for the same disease, the genes linked to ulcerative colitis in Europeans may not relate to this disease in the Japanese population or in other ethnic groups. In fact, the researchers found that although the European and Japanese populations share a few of these susceptibility genes, they don’t share some of the other genes identified in the European study.

Also, Kubo and colleagues identified some genes linked to ulcerative colitis in the Japanese that were not identified in the European studies. Knowing these genetic differences—and similarities—is important when trying to create a drug that will work in as many ethnic groups as possible.

Common Culprits

Major histocompatibility (MHC) molecules, which are expressed on the surface of cells, are involved in presenting antigens to the immune system to initiate—or to halt—an immune reaction. The region of the genome containing the MHC genes, found on chromosome 6 in humans, has been linked to many inflammatory diseases, and has been associated with ulcerative colitis in Europeans. The researchers also found a strong link between the MHC region and ulcerative colitis in the Japanese population.

Crohn’s disease is another type of inflammatory bowel disease that affects a larger portion of the gastrointestinal tract than ulcerative colitis and lesions of the gut lining from this disease appear quite different to those caused by ulcerative colitis. Because the two diseases look so dissimilar, separate genes could be expected to play a role in their induction. However, Kubo and colleagues found a genomic region linked to ulcerative colitis in the Japanese population that had previously been reported to play a role in Crohn’s disease. This locus had also been identified in the European ulcerative colitis GWAS. Future experiments are needed to determine why one genomic locus could enhance disease susceptibility for two different types of inflammatory bowel disease.

The guilty parties

In the five areas linked to ulcerative colitis in the Japanese, Kubo and colleagues identified three areas that had not been previously associated with this disease. One area, on chromosome 13, did not contain any known genes. The researchers suggest that this region could control the expression of nearby genes. Additional studies are necessary to understand how this control could occur.

The other two areas contain the genes FCGR2A and SLC26A3. FCGR2A encodes a receptor protein found at the cell surface of immune cells. When this receptor binds to antibodies, it can cause secretion of cytokine molecules from the immune cells, which may then trigger inflammation. Since the FCGR2A gene variant associated with ulcerative colitis would bind more tightly to antibodies, it may enhance the activation of immune cells, leading to the inflammation that is observed in ulcerative colitis. Surprisingly, previous findings indicated that an opposing change in the FCGR2A gene, which would instead reduce antibody affinity to the receptor, was linked to three autoimmune diseases: lupus, multiple sclerosis and type 1 diabetes. Why altering the affinity of this receptor for its antibody ligand would induce so many different types of disease is a key question for future work.

SLC26A3 encodes a transporter of chloride and bicarbonate ions that is expressed on gut epithelial cells. The expression of this transporter is reduced in humans with ulcerative colitis. Because the change in this area of the genome, which the researchers report as linked to ulcerative colitis, was outside of the protein coding region of the SLC26A3 gene, it is likely that this change in the DNA would regulate the expression of SLC26A3.

Kubo and his colleagues now plan to examine exactly how the observed variation in FCGR2A and SLC26A3 affect susceptibility to ulcerative colitis. Because the link between these genes and ulcerative colitis had not been made before, these findings “will open the door to further understanding of the mechanism of ulcerative colitis,” says Kubo.

Michiaki Kubo

Michiaki Kubo was born in Miyazaki, Japan, in 1963. He graduated from the Faculty of Medicine, Kyushu University in 1988, and started his work as a medical doctor at the Second department of Internal Medicine, Kyushu University. He started his clinical research as a research fellow of clinical epidemiology at the Hisayama study, a prospective population-based study of cardiovascular disease since 1995. He started genetic research as a visiting fellow of the Institute of Medical Science, the University of Tokyo (Professor Yusuke Nakamura Lab) from 2003 and found two susceptibility genes for brain infarction in 2007. He joined the RIKEN Center for Genomic Medicine as a group director of Research group of Genotyping in 2006. Since then, he is working on to find the susceptibility genes of common diseases using genome-wide association study.

Asano, K. Matsuhita, T., Umeno, J., Hosono, N., Takahashi, A., Kawaguchi, T., Matsumoto, T., Matsui, T., Kakuta, Y., Kinouchi, Y., et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nature Genetics 41, 1325–1329 (2009)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/hom/6200
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>