Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jamming in tumours

29.01.2014
How an immune molecule makes cancer cells starve

Formation of Interferon-beta (IFN-β) is increased in infections and cancer diseases. Consequently, it is often administered therapeutically. Amongst other things, it prevents formation of new blood vessels within a tumour, thus inhibiting its growth.


Fluorescence image showing a neutrophil (in red) going out of the blood vessel (in green) into a tumour. These immune cells facilitate tumour vessel growth.

HZI/Jablonska-Koch

Scientists at the Helmholtz Centre for Infection Research (HZI) have now discovered that IFN-β does so by impeding the communication between cancer tissue and immune cells. Their findings, published in the scientific magazine “International Journal of Cancer”, help to understand how this “jamming” can be used therapeutically.

Just like healthy cells, tumour cells need nutrients and oxygen in order to survive. For this reason, a tumour of a certain size has to ensure that it is connected to the blood circulation. In doing this, it is supported by cells of the innate immune system, the neutrophil granulocytes or brief neutrophils, which are supposed to protect the body against pathogens.

Neutrophils normally circulate in the blood until—attracted by so-called chemokines—they enter the tissue where they ingest and destroy intruding pathogens. In addition, these cells are able to trigger the formation of blood vessels. Presumably, this is how they help to repair tissue which has been destroyed by inflammation. However, neutrophils are also able to enter cancer tissue and contribute to its connection to the blood supply. This is probably the reason why detection of numerous neutrophils in a tumour is a sign of unfavourable patient prognosis.

IFN-β is used as a treatment for some tumours such as melanomas and leukaemia. Scientists at the HZI in Braunschweig had shown recently that this messenger molecule can interfere with cancer growth by inhibiting the formation of new blood vessels. However, the way it does so remained a puzzle.

Now, researchers have succeeded in revealing the effect of IFN-β on migration of pro-tumour neutrophils. “We wanted to understand why IFN-β prevents the neutrophils from entering the tumour,” says Dr Jadwiga Jablonska-Koch, scientist in the “Molecular Immunology” department at the HZI. “This would be the way for physicians to improve existing therapies and choose appropriate treatment for the individual patient.”

To this end, the scientists followed the interaction between the cells. Messenger molecules such as chemokines are a means of communication frequently used for this purpose. They are produced by cells and bind to correspondingly shaped surface receptors. In the case of neutrophils, this is the receptor called CXCR2. It binds the chemokines CXCL1, CXCL2 and CXCL5. “We have seen that the concentration of the chemokines in the bone marrow, where the neutrophils originate, is low,” says Dr Siegfried Weiss, head of the department in which Jablonska-Koch works. “On the other hand, we find a high concentration in the tumour, which attracts the neutrophils.” Neutrophils migrate along the chemokine gradient into the tumour and once there, they themselves release the same chemokines in order to attract other neutrophils to obtain more support.

IFN-β interferes with this communication: it makes the cells in the tumour produce fewer chemokines and no chemokine gradient is formed. “That way, fewer neutrophils enter the cancer tissue and fewer new blood vessels are formed,” says Jablonska-Koch. “The tumour is not effectively connected to the vital blood supply and cannot grow efficiently.” For that reason it is of therapeutical benefit to administer IFN-β additionally. “We now better understand why IFN-β helps in some cancers and that it is an important part of the body’s own system for combating tumours,” says Weiss. Their findings could help physicians to assess which patients might profit from administering IFN-β and when neutrophils ought to be an objective of cancer therapy.

Original publication
Jadwiga Jablonska, Ching-Fang Wu, Lisa Andzinski, Sara Leschner, Siegfried Weiß
CXCR2-mediated tumor associated neutrophil recruitment is regulated by IFN-β
International Journal of Cancer, 2013 DOI 10.1002/ijc.28551
The focus of HZI's Molecular Immunology Department is to investigate the role of signaling molecules used by the immune system. One of the primary research goals is to determine how immune cells communicate with each other during an infection and which messenger substances they use for this purpose.
The Helmholtz Centre for Infection Research (HZI)
Scientists at the Helmholtz Centre for Infection Research in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines.

http://www.helmholtz-hzi.de

Dr. Birgit Manno | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/jamming_in_tumours/

More articles from Life Sciences:

nachricht How to become a T follicular helper cell
31.07.2015 | La Jolla Institute for Allergy and Immunology

nachricht Heating and cooling with light leads to ultrafast DNA diagnostics
31.07.2015 | University of California - Berkeley

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>