Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jamming a protein signal forces cancer cells to devour themselves

04.04.2014

Inhibiting cancer-promoting prolactin causes unconventional cell death in preclinical research

Under stress from chemotherapy or radiation, some cancer cells dodge death by consuming a bit of themselves, allowing them to essentially sleep through treatment and later awaken as tougher, resistant disease.

Interfering with a single cancer-promoting protein and its receptor can turn this resistance mechanism into lethal, runaway self-cannibalization, researchers at The University of Texas MD Anderson Cancer Center report in the journal Cell Reports.

"Prolactin is a potent growth factor for many types of cancers, including ovarian cancer," said senior author Anil Sood, M.D., professor of Gynecologic Oncology and Reproductive Medicine. "When we block prolactin signaling, it sets off a chain of downstream events that result in cell death by autophagy."

Autophagy – self-eating – is a natural cellular defense against lack of nutrients and other stressors. It also recycles damaged organelles and proteins for new use by the cell. Autophagy puts the cell in an inactive quiet state called quiescence, which allows it to recover, Sood said. For cancer cells, it's a way to survive treatment.

"Our findings provide a clinical rationale for blocking prolactin and its receptor and for using prolonged autophagy as an alternative strategy for treating cancers," said Yunfei Wen, Ph.D., first author of this study and instructor of Gynecologic Oncology.

Steep reductions in tumor weight for mice with ovarian cancer

Prolactin (PRL) is a hormone previously implicated in ovarian, endometrial and other cancer development and progression. When PRL binds to its cell membrane receptor, PRLR, activation of cancer-promoting cell signaling pathways follows. Poor understanding of the underlying processes has made the pathway hard to target for cancer treatment, Sood said.

Given that knowledge, the researchers started with mouse experiments and worked backward to cell line experiments, a reversal of the usual order of preclinical cancer research.

A slight variant of normal prolactin called G129R interferes with the connection between prolactin and its receptor. Using G129R, Sood and colleagues treated mice that had two different lines of human ovarian cancer that each expresses the prolactin receptor.

After 28 days of treatment with G129R, tumor weights fell by 50 percent for mice with either type of ovarian cancer. Adding the taxane-based chemotherapy agent paclitaxel, commonly used to treat ovarian cancer, cut tumor weight by 90 percent. Higher doses of G129R may result in even greater therapeutic benefit, Sood said.

The mice did not otherwise lose weight, suffer lowered blood counts or show any other sign of toxicity of side effects from G129R treatment in the liver, spleen or kidneys.

3D experiments show death by self-eating

The team used three-dimensional culture of cancer spheroids, where treatment with the prolactin-mimicking peptide sharply reduced the number of spheroids. Treatment also blocked the activation of JAK2 and STAT signaling pathways known to promote cancer.

Protein analysis in the treated spheroids showed increased presence of autophagy factors and genomic analysis revealed increased expression of a number of genes involved in autophagy progression and cell death.

A series of experiments using fluorescence and electron microscopy showed that the cytosol of treated cells had large numbers of cavities caused by autophagy, a hallmark of autophagy-induced cell death.

Autophagy works by encasing targeted proteins or organelles in a membrane, which then connects with lysosomes that dissolve the contents, leaving empty cavities, or vacuoles. Adding an autophagy inhibitor reversed the treatment effect of G129R in the 3D spheres.

Connection to ovarian cancer patient survival

The team also connected the G129R-induced autophagy to the activity of PEA-15, a known cancer inhibitor. Analysis of tumor samples from 32 ovarian cancer patients showed that tumors express higher levels of the prolactin receptor and lower levels of phosphorylated PEA-15 than normal ovarian tissue.

Patients with low levels of the prolactin receptor and higher PEA-15 had longer overall survival than those with high PRLR and low PEA-15.

###

The researchers are working to take G129R to clinical trials said Sood, who holds the Bettyann Asche Murray Distinguished Professorship in Ovarian Cancer Research.

Co-authors with Wen and Sood are Behrouz Zand, M.D., Chunhua Lu, M.D., Ph.D., Amy Carroll, M.D., Yu Kang, M.D., Ph.D., Rajesha Rupaimoole, Heather Dalton, M.D., and Robert Coleman, M.D., of Gynecologic Oncology and Reproductive Medicine; Bulent Ozpolat, M.D., Ph.D., Erkan Yuca, Ph.D., Neslihan Alpay, Ph.D., Ibrahim Tekedereli, M.D., Walter Hittelman, Ph.D., and Gabriel Lopez-Berestein

Scott Merville | EurekAlert!

Further reports about: Cancer Gynecologic Oncology autophagy death ovarian prolactin receptor

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>