Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jacobs researchers develop new carbene complexes for versatile industrial application

20.03.2013
Carbenes are considered rather unstable carbon compounds, whose synthesis in the form of carbene complexes showed only first results in the 1970s.

N-Heterocyclic carbenes (NHC) in particular were soon used in pharmaceutical and technical processes. Scientists at Jacobs University have now developed new ways of synthesizing stable NHC-complexes of main-group elements, which are user-friendly. They can be used as chemical overcharge protection in lithium ion batteries or possibly as liquid crystals in LC-displays.


New compounds with liquid-crystalline characteristics
Photo: Jacobs University

The German Research Foundation, the Federal Ministry of Economics and Technology and the Merck KGaA support the research with a total of €1.2million.

Starting from the precursor DFI (1,3-dimethyl-2,2-difluoroimidazolidine) Gerd-Volker Röschenthaler, Professor of Chemistry at Jacobs University and Dr. Tobias Böttcher for the first time produced a carbene complex of phosphor(V) through oxidative addition to PF3 and later from easier-to handle PCl3.

“Our aim was to find synthetic possibilities, which are easy to apply and which could simplify processes in research and development,” says Prof. Röschenthaler.

The new carbene complex NHC-PF5 allows for a variety of practical applications. In cooperation with Prof. Martin Winter from the MEET Institute at the University of Münster the Jacobs researchers learned that NHC-PF5 could be effective as chemical overcharge protection in lithium ion batteries: By adding the complex to its electrolyte components, the battery deactivated at 4.6 volt. An overcharge causing the battery to burst, ignite or explode can be prevented. The scientists are now looking into the reasons why NHC-PF5 serves well as an overcharge protection. Their collaborative research is supported by the Federal Ministry of Economics and Technology as well as industrial partners - among them BASF, Volkswagen AG, SGL Carbon, Toda Europe and Merck. Together with the University of Münster a patent has been filed for “Electrolyte additive for lithium-based energy sources” (University of Münster, Jacobs University Bremen), DE 10 2011 055 028.3, PCT/EP2012/071544).

In cooperation with Dr. Matthias Bremer from Merck, Prof. Röschenthaler, Dr. Böttcher and their team (Dr. Romana Pajkert and Dr. Maksym Ponomarenko) were also able to develop new compounds with liquid-crystalline characteristics. The compounds (see image of molecular structure) contain exceptionally large dipole moments, a prerequisite for application as liquid crystals. This particular class of compounds could constitute a new form of liquid crystals. The dipole moment serves to improve their properties, which in turn could lead to increased brilliance in smartphone displays or faster circuit times in monitors and flat-screens.

Together with Prof. Berthold Hoge from University of Bielefeld the Jacobs researchers could show that phosphor(V) carbene complexes could be split neatly by hydrogen fluoride to chemical salts with a very low melting point (they are liquid at room temperature). They can be used widely spread as so-called ionic liquids. Being easily produced in just one step the new synthetic route is of great interest to chemical industry as reaction medium in organic syntheses.

Another way to synthesize carbene complexes Röschenthaler and Böttcher found in carbene transfer: an inexpensive, simple and highly versatile method. First a carbene complex is synthesized that is both stable and at the same time labile enough to transfer the carbene to the favored element. The scientists used NHC-SiCl4 as transfer reagent and transferred the carbene to PCl3 (Chemical Science, 2013, 4, 77-83, DOI: 10.1039/C2SC21214E). This is the first time a carbene has been transferred from one main group element to another. Furthermore, it is also possible to transfer carbenes to transition metals, which the scientists could show with nickel(II) and palladium(II)chloride. Carbene complexes of these metals often show good catalytic properties and thus are relevant for industry. A patent has been filed for this new manufacturing method as well: „Silicon-based Carbene Transfer Reagent“ (Jacobs University Bremen, DE 10 2012 102 535.5).

Contact:
Gerd-Volker Röschenthaler | Professor of Chemistry
E-mail: g.roeschenthaler@jacobs-university.de | Phone: +49 421 200-3138

Dr. Kristin Beck | idw
Further information:
http://www.jacobs-university.de

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>