Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jacobs researchers develop new carbene complexes for versatile industrial application

20.03.2013
Carbenes are considered rather unstable carbon compounds, whose synthesis in the form of carbene complexes showed only first results in the 1970s.

N-Heterocyclic carbenes (NHC) in particular were soon used in pharmaceutical and technical processes. Scientists at Jacobs University have now developed new ways of synthesizing stable NHC-complexes of main-group elements, which are user-friendly. They can be used as chemical overcharge protection in lithium ion batteries or possibly as liquid crystals in LC-displays.


New compounds with liquid-crystalline characteristics
Photo: Jacobs University

The German Research Foundation, the Federal Ministry of Economics and Technology and the Merck KGaA support the research with a total of €1.2million.

Starting from the precursor DFI (1,3-dimethyl-2,2-difluoroimidazolidine) Gerd-Volker Röschenthaler, Professor of Chemistry at Jacobs University and Dr. Tobias Böttcher for the first time produced a carbene complex of phosphor(V) through oxidative addition to PF3 and later from easier-to handle PCl3.

“Our aim was to find synthetic possibilities, which are easy to apply and which could simplify processes in research and development,” says Prof. Röschenthaler.

The new carbene complex NHC-PF5 allows for a variety of practical applications. In cooperation with Prof. Martin Winter from the MEET Institute at the University of Münster the Jacobs researchers learned that NHC-PF5 could be effective as chemical overcharge protection in lithium ion batteries: By adding the complex to its electrolyte components, the battery deactivated at 4.6 volt. An overcharge causing the battery to burst, ignite or explode can be prevented. The scientists are now looking into the reasons why NHC-PF5 serves well as an overcharge protection. Their collaborative research is supported by the Federal Ministry of Economics and Technology as well as industrial partners - among them BASF, Volkswagen AG, SGL Carbon, Toda Europe and Merck. Together with the University of Münster a patent has been filed for “Electrolyte additive for lithium-based energy sources” (University of Münster, Jacobs University Bremen), DE 10 2011 055 028.3, PCT/EP2012/071544).

In cooperation with Dr. Matthias Bremer from Merck, Prof. Röschenthaler, Dr. Böttcher and their team (Dr. Romana Pajkert and Dr. Maksym Ponomarenko) were also able to develop new compounds with liquid-crystalline characteristics. The compounds (see image of molecular structure) contain exceptionally large dipole moments, a prerequisite for application as liquid crystals. This particular class of compounds could constitute a new form of liquid crystals. The dipole moment serves to improve their properties, which in turn could lead to increased brilliance in smartphone displays or faster circuit times in monitors and flat-screens.

Together with Prof. Berthold Hoge from University of Bielefeld the Jacobs researchers could show that phosphor(V) carbene complexes could be split neatly by hydrogen fluoride to chemical salts with a very low melting point (they are liquid at room temperature). They can be used widely spread as so-called ionic liquids. Being easily produced in just one step the new synthetic route is of great interest to chemical industry as reaction medium in organic syntheses.

Another way to synthesize carbene complexes Röschenthaler and Böttcher found in carbene transfer: an inexpensive, simple and highly versatile method. First a carbene complex is synthesized that is both stable and at the same time labile enough to transfer the carbene to the favored element. The scientists used NHC-SiCl4 as transfer reagent and transferred the carbene to PCl3 (Chemical Science, 2013, 4, 77-83, DOI: 10.1039/C2SC21214E). This is the first time a carbene has been transferred from one main group element to another. Furthermore, it is also possible to transfer carbenes to transition metals, which the scientists could show with nickel(II) and palladium(II)chloride. Carbene complexes of these metals often show good catalytic properties and thus are relevant for industry. A patent has been filed for this new manufacturing method as well: „Silicon-based Carbene Transfer Reagent“ (Jacobs University Bremen, DE 10 2012 102 535.5).

Contact:
Gerd-Volker Röschenthaler | Professor of Chemistry
E-mail: g.roeschenthaler@jacobs-university.de | Phone: +49 421 200-3138

Dr. Kristin Beck | idw
Further information:
http://www.jacobs-university.de

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>