Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IU research team discovers TB disease mechanism and molecule to block it

16.02.2010
Indiana University School of Medicine researchers have identified a mechanism used by the tuberculosis bacterium to evade the body's immune system and have identified a compound that blocks the bacterium's ability to survive in the host, which could lead to new drugs to treat tuberculosis.

Zhong-Yin Zhang, Ph.D., Robert A. Harris Professor and chairman of the Department of Biochemistry and Molecular Biology, and his colleagues revealed the biochemical processes that TB bacteria employ to subvert macrophages – key infection-fighting cells – in this week's online early edition of the Proceedings of the National Academy of Sciences. They also described a compound they have synthesized – I-A09 – that blocked the TB bacterium's activity in laboratory tests.

About one-third of the world's population is infected with TB, a contagious disease that causes nearly 2 million deaths annually, according to the Centers for Disease Control and Prevention. Although medicines to treat TB are available, they must be taken for at least six months to fully eliminate all TB bacteria from the body. People who do not follow the lengthy treatment regimen can become sick and infectious with a more virulent form of the disease that is resistant to standard medicines.

The compound synthesized by the IU group is a proof of concept that a small molecule drug targeted against an essential virulent factor of the TB bacterium can be an effective strategy, Zhang said. If it can be developed into an approved drug, the result could significantly shorten treatment times for TB, he said.

The focus of the research was TB actions inside macrophages, which are infection fighting cells in the body's immune system. Macrophage cells' tools include the production of special proteins called cytokines to attack foreign invaders. Infected macrophages can also initiate a self-destruction mechanism called apoptosis, which signals other immune system cells to mount a defense against the infection.

TB bacteria are able to disable the macrophage defenses by secreting virulent factors into the host. The IU team found that the actions of a particular virulent factor – a protein phosphatase enzyme called mPTPB – blocked both the production of the infection-fighting cytokines, and the macrophage's self-destruct system.

Using combinatorial chemical synthesis and high-throughput screening, the researchers developed the I-A09 compound, which successfully blocked the action of mPTPB. Tests involving live TB bacteria were conducted at the Institute of Tuberculosis Research, University of Illinois at Chicago.

Currently, compound I-A09 is being evaluated in a TB animal model at the Johns Hopkins University School of Public Health. More potent forms of the I-A09 compound are being pursued by the IU team for possible future clinical testing, Dr. Zhang said.

The research was supported by grants from the National Institutes of Health.

Eric Schoch | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>