Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IU-led team uncovers process for chameleon-like changes in world's most abundant phytoplankton

27.11.2012
IU seeks patent for discovery with implications for health care, climate change research
An international team of biologists led by Indiana University's David M. Kehoe has identified both the enzyme and molecular mechanism critical for controlling a chameleon-like process that allows one of the world's most abundant ocean phytoplankton, once known as blue-green algae, to maximize light harvesting for photosynthesis.

Responsible for contributing about 20 percent of the total oxygen production on the planet, the cyanobacteria Synechococcus uses its own unique form of a sophisticated response called chromatic acclimation to fine tune the absorption properties of its photosynthetic antenna complexes to the predominant ambient light color. The researchers identified and characterized an enzyme, MpeZ, that plays a pivotal role in the mechanism that allows two different water-soluble proteins in Synechococcus -- phycoerythrin I and II -- to alter their pigmentation in order to maximize photon capture for photosynthesis.

Scientists want to understand how cyanobacteria optimize their photosynthetic activities in different light conditions to gain a better appreciation of how human activities affect the phytoplankton's ability to produce oxygen and uptake the greenhouse gas carbon dioxide, which they consume in order to grow. Science and industry also use the pigment-protein complex phycoerythrin for fluorescent imaging and as fluorescent markers in biotechnology and health care applications.

"We now have the ability to attach a novel chromophore, part of a molecule responsible for its color, to phycoerythrin, which provides a new chromophore-protein combination that absorbs and fluoresces at a wavelength that is not currently commercially available," said Kehoe, a professor in the IU Bloomington College of Arts and Sciences' Department of Biology. "Our results suggest that this new chromoprotein is brighter and more stable than most on the market today."

Kehoe also noted IU has begun the process of filing a patent on the invention.

The team found that the gene encoding the MpeZ enzyme is activated in blue light. Once produced, MpeZ then binds to antenna proteins containing pigments that normally catch green light and attaches an alternative chromophore that allows the antennae to capture blue light. The specific mechanism, called type IV chromatic acclimation, involves replacing three molecules of the green light-absorbing chromophore with an equal number of blue light-absorbing chromophore. This color-shifting is reversible and is controlled by the ratio of blue to green light in the environment.

"These 'chromatic adapters' are true chameleons that can efficiently live in green coastal waters as well as in blue offshore waters by modifying their pigmentation," Kehoe said. "Synechococcus cells maintained in blue light harvest preferentially blue light, while cells grown in green light harvest more green."

"A phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus" was published online in the Nov. 12 Early Edition of Proceedings of the National Academy of Science. Co-authors with Kehoe, also affiliated with IU Bloomington's Indiana Molecular Biology Institute, were IU Ph.D. student Animesh Shukla; Avijit Biswas and Wendy M. Schluchter of the University of New Orleans; Nicolas Blot of Université Pierre et Marie Curie - Paris 06, the Centre National de la Recherche Scientifique and Clermont Université in France; Frederic Partensky and Laurence Garczarek of Université Pierre et Marie Curie - Paris 06 and the Centre National de la Recherche Scientifique; IU Bloomington Department of Chemistry METACyt Biochemical Analysis Center mass spectrometry facility manager and assistant scientist Jonathan A. Karty and assistant scientist Loubna A. Hammad; and former IU biology graduate student Andrian Gutu, now of Harvard University.

Funding for this work came from the Agence Nationale Recherches in France, the European program MicroB3, IU's Office of International Programs, the National Science Foundation and the Lilly Foundation.

For more information or to speak with Kehoe, please contact Steve Chaplin, IU Communications, at 812-856-1896 or stjchap@iu.edu.

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>