Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IU-led team uncovers process for chameleon-like changes in world's most abundant phytoplankton

27.11.2012
IU seeks patent for discovery with implications for health care, climate change research
An international team of biologists led by Indiana University's David M. Kehoe has identified both the enzyme and molecular mechanism critical for controlling a chameleon-like process that allows one of the world's most abundant ocean phytoplankton, once known as blue-green algae, to maximize light harvesting for photosynthesis.

Responsible for contributing about 20 percent of the total oxygen production on the planet, the cyanobacteria Synechococcus uses its own unique form of a sophisticated response called chromatic acclimation to fine tune the absorption properties of its photosynthetic antenna complexes to the predominant ambient light color. The researchers identified and characterized an enzyme, MpeZ, that plays a pivotal role in the mechanism that allows two different water-soluble proteins in Synechococcus -- phycoerythrin I and II -- to alter their pigmentation in order to maximize photon capture for photosynthesis.

Scientists want to understand how cyanobacteria optimize their photosynthetic activities in different light conditions to gain a better appreciation of how human activities affect the phytoplankton's ability to produce oxygen and uptake the greenhouse gas carbon dioxide, which they consume in order to grow. Science and industry also use the pigment-protein complex phycoerythrin for fluorescent imaging and as fluorescent markers in biotechnology and health care applications.

"We now have the ability to attach a novel chromophore, part of a molecule responsible for its color, to phycoerythrin, which provides a new chromophore-protein combination that absorbs and fluoresces at a wavelength that is not currently commercially available," said Kehoe, a professor in the IU Bloomington College of Arts and Sciences' Department of Biology. "Our results suggest that this new chromoprotein is brighter and more stable than most on the market today."

Kehoe also noted IU has begun the process of filing a patent on the invention.

The team found that the gene encoding the MpeZ enzyme is activated in blue light. Once produced, MpeZ then binds to antenna proteins containing pigments that normally catch green light and attaches an alternative chromophore that allows the antennae to capture blue light. The specific mechanism, called type IV chromatic acclimation, involves replacing three molecules of the green light-absorbing chromophore with an equal number of blue light-absorbing chromophore. This color-shifting is reversible and is controlled by the ratio of blue to green light in the environment.

"These 'chromatic adapters' are true chameleons that can efficiently live in green coastal waters as well as in blue offshore waters by modifying their pigmentation," Kehoe said. "Synechococcus cells maintained in blue light harvest preferentially blue light, while cells grown in green light harvest more green."

"A phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus" was published online in the Nov. 12 Early Edition of Proceedings of the National Academy of Science. Co-authors with Kehoe, also affiliated with IU Bloomington's Indiana Molecular Biology Institute, were IU Ph.D. student Animesh Shukla; Avijit Biswas and Wendy M. Schluchter of the University of New Orleans; Nicolas Blot of Université Pierre et Marie Curie - Paris 06, the Centre National de la Recherche Scientifique and Clermont Université in France; Frederic Partensky and Laurence Garczarek of Université Pierre et Marie Curie - Paris 06 and the Centre National de la Recherche Scientifique; IU Bloomington Department of Chemistry METACyt Biochemical Analysis Center mass spectrometry facility manager and assistant scientist Jonathan A. Karty and assistant scientist Loubna A. Hammad; and former IU biology graduate student Andrian Gutu, now of Harvard University.

Funding for this work came from the Agence Nationale Recherches in France, the European program MicroB3, IU's Office of International Programs, the National Science Foundation and the Lilly Foundation.

For more information or to speak with Kehoe, please contact Steve Chaplin, IU Communications, at 812-856-1896 or stjchap@iu.edu.

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>