Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IU chemists produce star-shaped macromolecule that grabs large anions

17.06.2013
Chemists at Indiana University Bloomington have created a symmetrical, five-sided macrocycle that is easy to synthesize and has characteristics that may help expand the molecular tool box available to researchers in biology, chemistry and materials sciences.

The molecule, which the researchers call cyanostar, was developed in the lab of Amar Flood, associate professor in the Department of Chemistry in the College of Arts and Sciences. It is described in an article in the journal Nature Chemistry, scheduled for publication in August and available online.


This model shows the five-sided cyanostar macrocycle capturing perchlorate at its center.

Credit: Amar Flood

Doctoral student Semin Lee is the lead author of the article, "A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate (3)rotaxanes." Flood and Chun-Hsing Chen, research crystallographer in the IU Molecular Structure Center, are co-authors.

"Macrocycles have been at the heart of molecular recognition experiments in recent years," Flood said. "But they're a dime a dozen. To make a contribution, you have to raise the bar."

Cyanostar raises the bar not only because it is easy to make, but for its unprecedented ability to bind with large, negatively charged ions, suggesting potential applications ranging from environmental remediation of perchlorate and molecular sensing of biological phosphates, to processes related to the life cycle of lithium ion batteries.

The creation follows from earlier work in Flood's lab showing that organic molecules could be designed to remove negatively charged ions from solutions. While the molecules have a neutral charge overall, their structure causes them to exhibit electro-positive properties and bind with weakly coordinating anions that were once thought to be incapable of being captured by molecular receptors.

Flood challenges graduate students to generalize the previous discovery of strong CH hydrogen bonds by creating molecules with similar yet complementary properties. In response, Semin Lee proposed using the cyanostilbene molecule as a building block for a new macrocycle -- a cyclic macromolecule with the capacity to bind ions. After false starts, he designed cyanostar, with a structure that resembles a five-pointed star.

A cross-section of the crystalline structure of cyanostar resembles the five-sided figures that Albrecht Durer showed in 1525 could be "packed" to tile a two-dimensional surface with periodic patterns. The form of the molecule and its fivefold symmetry are suggestive of Penrose tiles, geometrical forms that mathematicians have investigated in recent decades, and of quasicrystals, ordered arrays of atoms and molecules whose discovery in the 1980s changed the field of materials chemistry.

While chemists have created countless macrocycles, cyanostar is unusual in that it can be synthesized in a "one pot" process, without multiple, time-consuming steps. It is also atypical in that the synthesis produces high yields of over 80 percent, even as the quantity being produced increases to about 10 grams.

"That's quite unique," Flood said. "Normally, when you increase the amount of material you add to the reaction, the yield just drops off."

Shaped like shallow bowls, the molecules have a strong affinity for binding with large anions such as certain borate, chlorate and phosphate ions. The molecules bind in 2-to-1 sandwich-shaped complexes, with the anion sandwiched between two saucer-like cyanostars.

In addition to demonstrating its binding ability, the chemists showed cyanostar can be assembled into a dialkylphosphate rotaxane, a wheel-on-axle assembly in which a pair of macrocycles is threaded with a molecular rod, which is then capped on both ends by a "stopper." Rotaxanes are precursors of molecular machines and motors. Some can be manipulated -- for example, by applying light or heat -- to serve as chemical switches or to accomplish other types of work at the molecular level.

Support for the research came from the National Science Foundation (NSF/CHE-0844441). Funding for equipment used in the analysis is from NSF and the U.S. Department of Energy. To speak with Flood, please contact Steve Hinnefeld, IU Communications, 812-856-3488 or slhinnef@iu.edu.

Steve Hinnefeld | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>